Skip to main content
Log in

Factors influencing the Agrobacterium tumefaciens-mediated transformation of carrot (Daucus carota L.)

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

To develop an efficient procedure for Agrobacterium tumefaciens-mediated genetic transformation of carrot (Daucus carota L.) the effects of several factors were studied. Parameters which significantly affected the transformation frequency were the variety, the explant type, and the co-cultivation period. Under optimal conditions, using the A. tumefaciens C58C1 containing either pGSTRN943 or pGSGluc1 and 3 days of co-cultivation, the frequency of transformation of petiole explants of the variety Nanco was greater than 45%. This procedure does not require acetosyringone or prolonged precultivation period. Using kanamycin (100 mg l-1) for selection, a large number of transgenic plantlets developed from the embryogenic calli within 8–10 weeks of culture on hormone-free medium. Transformation was confirmed by histochemical detection of β-glucuronidase activity in the transformed cells, by the ability of petiole segments to produce embryogenic calli in presence of kanamycin, and by Southern hybridization analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolton GW, Nester EW & Gordon MP (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232: 983–985

    Google Scholar 

  • Chabaud M, Passiatore JE, Cannon F & Buchanan-Wollaston V (1988) Parameters affecting the frequency of kanamycin resistant alfalfa obtained by Agrobacterium tumefaciens mediated transformation. Plant Cell Rep. 7: 512–516

    Google Scholar 

  • Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M & Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucl. Acids Res. 13: 4777–4778

    Google Scholar 

  • Deblaere R, Reynaerts A, Höfte H, Hernalsteens JP, Leemans J & Van Montagu M (1987) Vectors for cloning in plant cells. Methods in Enzymology 153: 277–292

    Google Scholar 

  • De Block M (1989) Genotype-independent leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium tumefaciens. Theor. Appl. Genet. 76: 767–774

    Google Scholar 

  • De Block M, Herrera-Estrella L, Van Montagu M & Zambryski P (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J. 3: 1681–1689

    Google Scholar 

  • De Cleene M & De Ley J (1976) The host range of crown gall. Bot. Rev. 42: 389–466

    Google Scholar 

  • Dellaporta SL, Wood J & Hicks JB (1983) A plant DNA mini-preparation version II. Plant Mol. Biol. Rep. 1: 19–21

    Google Scholar 

  • Fillati JJ, Kiser J, Rose R & Comai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/Technology 5: 726–730

    Google Scholar 

  • Gasser CS & Fraley RT (1989) Genetically engineering plants for crop improvement. Science 244: 1293–1299

    Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PPJ & Schilperoot RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303: 179–180

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405

    Google Scholar 

  • Jefferson RA, Kavanagh T & Bevan M (1987) The GUS gene fusion system. EMBO J. 6: 3901–3907

    Google Scholar 

  • Langridge WH, Fitzgerald KJ, Koncz C, Schell J & Szalay AA (1989) Dual promoter of Agrobacterium tumefaciens mannopine synthase genes is regulated by plant growth hormones. Proc. Natl. Sci. USA 86: 3219–3223

    Google Scholar 

  • Maniatis T, Frisch EF & Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbour, New York

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497

    Google Scholar 

  • Nitsch JP & Nitsch C (1965) Néoformation de fleurs in vitro chez une espèce de jours courts: Plumbago indica L. Ann. Physiol. Vég. 7: 251–256

    Google Scholar 

  • Odell JT, Nagy F & Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812

    Google Scholar 

  • Pawlick N (1991) Contribution à l'amélioration de la Carotte (Daucus carota L.) en vue d'augmenter sa richesse en carotènes et en fibres alimentaires. Variabilité somaclonale et tranformation génétique par Agrobacterium tumefaciens. -PhD thesis, Université de Technologie de Compiegne

  • Saito K, Yamazaki M, Kameto H, Murakoshi I, Fukuda Y & Van Montagu M (1991) Tissue-specific and stress-enhancing expression of the TR promoter for mannopine synthase in transgenic medicinal plants. Planta 184: 40–46

    Google Scholar 

  • Sangwan RS, Ducrocq C & Sangwan-norreel BS (1991) Effect of culture conditions on Agrobacterium-mediated transformation of Datura: Plant Cell Rep. 10: 90–93

    Google Scholar 

  • Sangwan RS & Sangwan-Norreel BS (1990) Genetic transformation and plant improvement. In: Sangwan RS & Sangwan-Norreel BS (Eds) The impact of Biotechnology in Agriculture (pp 299–337). Kluwer Academic Publishers, Dordrecht, Boston, London

    Google Scholar 

  • Schmidt R & Willmitzer L (1988) High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants. Plant Cell Rep. 7: 583–586

    Google Scholar 

  • Scott RJ & Draper J (1987) Transformation of carrot tissues derived from proembryogenic suspension cells: a useful model system for gene expression studies in plants. Plant Mol. Biol. 8: 265–274

    Google Scholar 

  • Sheikholeslam SN & Weeks DP (1987) Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant. Mol. Biol. 8: 291–298

    Google Scholar 

  • Steward FC, Mapes MO & Smith J (1958) Growth and organised development of cultured cells. Am. J. Bot. 45: 693–713

    Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37: 959–967

    Google Scholar 

  • Thomas JC, Guiltinan MJ, Bustos S, Thomas T & Nessler C (1989) Carrot (Daucus carota) hypocotyl transformation using Agrobacterium tumefaciens. Plant Cell Rep. 8: 354–357

    Google Scholar 

  • Valvekens D, Van Montagu M & Van Lijsebettens (1988) Agrobacterium tumefaciens- mediated transformation of Arabidopsis root explants by using kanamycin selection. Proc. Natl. Acad. Sci. USA 85: 5536–5540

    Google Scholar 

  • Velten J, Velten L, Hain R & Schell J (1984) Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumfaciens. EMBO J. 3: 2723–2730

    Google Scholar 

  • Wurtele ES & Bulka K (1989) A simple, efficient method for the Agrobacterium- mediated transformation of carrot callus cells. Plant Science 61: 253–262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawlicki, N., Sangwan, R.S. & Sangwan-Norreel, B.S. Factors influencing the Agrobacterium tumefaciens-mediated transformation of carrot (Daucus carota L.). Plant Cell Tiss Organ Cult 31, 129–139 (1992). https://doi.org/10.1007/BF00037697

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00037697

Key words

Navigation