Skip to main content

Cell-Penetrating Peptides as Theranostics Against Impaired Blood-Brain Barrier Permeability: Implications for Pathogenesis and Therapeutic Treatment of Neurodegenerative Disease

  • Protocol
  • First Online:
Blood-Brain Barrier

Part of the book series: Neuromethods ((NM,volume 142))

  • 1960 Accesses

Abstract

Over the past few decades, the blood-brain barrier (BBB) has been acknowledged as the prime defense mechanism for the brain against exterior deadly substances. This dynamic barrier, which is primarily comprised of precisely arranged, specialized endothelial cells, astrocytes, and pericytes, not only prevents the brain interstitial fluid from mixing with the components of blood but also maintains a delicate balance between central nervous system (CNS) and blood circulatory system by transferring essential substances across the BBB. Thus, any dysfunction in the BBB activity leads to several neuroinflammatory disorders such as Alzheimer’s, Parkinson’s, and prion-related diseases. The risk posed by such neurodegenerative diseases has become the foremost public health concern worldwide because of the lack of BBB-permeable therapeutic agents. This points to the need for studying the characteristic traits of various BBB-permeable cell-penetrating peptides (CPPs), which have emerged as a potential drug delivery tool in CNS therapeutics. In this chapter, we would like to review the benefits of employing nuclear magnetic resonance (NMR) techniques toward understanding the structural, functional, and dynamic behavior of CPPs at the molecular level, during their interaction with BBB-model membranes. We conclude that CPPs can be utilized for developing promising therapeutic drugs against CNS diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7(1):a020412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Saunders NR et al (2016) The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? F1000Res 5:F1000 Faculty Rev-313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25(1):5–23

    Article  PubMed  Google Scholar 

  4. Zenaro E, Piacentino G, Constantin G (2017) The blood-brain barrier in Alzheimer’s disease. Neurobiol Dis 107:41–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patel MM, Patel BM (2017) Crossing the blood-brain barrier: recent advances in drug delivery to the brain. CNS Drugs 31(2):109–133

    Article  CAS  PubMed  Google Scholar 

  6. Antoniou X, Borsello T (2010) Cell permeable peptides: a promising tool to deliver neuroprotective agents in the brain. Pharmaceuticals (Basel) 3(2):379–392

    Article  CAS  Google Scholar 

  7. Savelieff MG, Lee S, Liu Y, Lim MH (2013) Untangling amyloid-β, tau, and metals in Alzheimer’s disease. ACS Chem Biol 8(5):856–865

    Article  CAS  PubMed  Google Scholar 

  8. Marques F et al (2013) Blood-brain-barriers in aging and in Alzheimer’s disease. Mol Neurodegener 8:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bowman GL, Quinn JF (2008) Alzheimer’s disease and the blood-brain barrier: past, present and future. Aging Health 4(1):47–55

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hamley IW (2012) The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem Rev 112(10):5147–5192

    Article  CAS  PubMed  Google Scholar 

  11. Provias J, Jeynes B (2014) The role of the blood-brain barrier in the pathogenesis of senile plaques in Alzheimer’s disease. Int J Alzheimers Dis 2014:191863

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brightman MW (1977) Morphology of blood-brain interfaces. Exp Eye Res 25(Suppl):1–25

    Article  PubMed  Google Scholar 

  13. Schlosshauer B (1993) The blood-brain barrier: morphology, molecules, and neurothelin. BioEssays 15(5):341–346

    Article  CAS  PubMed  Google Scholar 

  14. Patel MM et al (2009) Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 23(1):35–58

    Article  CAS  PubMed  Google Scholar 

  15. Stewart PA (2000) Endothelial vesicles in the blood-brain barrier: are they related to permeability? Cell Mol Neurobiol 20(2):149–163

    Article  CAS  PubMed  Google Scholar 

  16. Banks WA (2016) From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 15(4):275–292

    Article  CAS  PubMed  Google Scholar 

  17. Tarasoff-Conway JM et al (2015) Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 11(8):457–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ulrich JD, Huynh TP, Holtzman DM (2015) Re-evaluation of the blood-brain barrier in the presence of Alzheimer’s disease pathology. Neuron 88(2):237–239

    Article  CAS  PubMed  Google Scholar 

  19. Masserini M (2013) Nanoparticles for brain drug delivery. ISRN Biochem 2013:238428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Choonara YE et al (2016) Improving drug delivery technology for treating neurodegenerative diseases. Expert Opin Drug Deliv 13(7):1029–1043

    Article  CAS  PubMed  Google Scholar 

  21. Oller-Salvia B et al (2016) Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem Soc Rev 45(17):4690–4707

    Article  CAS  PubMed  Google Scholar 

  22. Chen H et al (2014) A new brain drug delivery strategy: focused ultrasound-enhanced intranasal drug delivery. PLoS One 9(10):e108880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Copolovici DM et al (2014) Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8(3):1972–1994

    Article  CAS  PubMed  Google Scholar 

  24. Lindgren M et al (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21(3):99–103

    Article  CAS  PubMed  Google Scholar 

  25. Lindgren M, Langel U (2011) Classes and prediction of cell-penetrating peptides. Methods Mol Biol 683:3–19

    Article  CAS  PubMed  Google Scholar 

  26. Kauffman WB et al (2015) Mechanism matters: a taxonomy of cell penetrating peptides. Trends Biochem Sci 40(12):749–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55(6):1179–1188

    Article  CAS  PubMed  Google Scholar 

  28. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193

    Article  CAS  PubMed  Google Scholar 

  29. Prochiantz A (1999) Homeodomain-derived peptides. In and out of the cells. Ann N Y Acad Sci 886:172–179

    Article  CAS  PubMed  Google Scholar 

  30. Joliot A et al (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A 88(5):1864–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pooga M et al (1998) Cell penetration by transportan. FASEB J 12(1):67–77

    Article  CAS  PubMed  Google Scholar 

  32. Elliott G, O’Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88(2):223–233

    Article  CAS  PubMed  Google Scholar 

  33. Chaloin L et al (1998) Design of carrier peptide-oligonucleotide conjugates with rapid membrane translocation and nuclear localization properties. Biochem Biophys Res Commun 243(2):601–608

    Article  CAS  PubMed  Google Scholar 

  34. Oehlke J et al (1998) Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1414(1–2):127–139

    Article  CAS  PubMed  Google Scholar 

  35. Snyder EL, Dowdy SF (2004) Cell penetrating peptides in drug delivery. Pharm Res 21(3):389–393

    Article  CAS  PubMed  Google Scholar 

  36. Derossi D et al (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269(14):10444–10450

    CAS  PubMed  Google Scholar 

  37. Derossi D et al (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 271(30):18188–18193

    Article  CAS  PubMed  Google Scholar 

  38. Deshayes S et al (2005) Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci 62(16):1839–1849

    Article  CAS  PubMed  Google Scholar 

  39. Ramsey JD, Flynn NH (2015) Cell-penetrating peptides transport therapeutics into cells. Pharmacol Ther 154:78–86

    Article  CAS  PubMed  Google Scholar 

  40. Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol 157(2):195–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bahnsen JS et al (2013) Antimicrobial and cell-penetrating properties of penetratin analogs: effect of sequence and secondary structure. Biochim Biophys Acta 1828(2):223–232

    Article  CAS  PubMed  Google Scholar 

  42. Alves ID et al (2009) The interaction of cell-penetrating peptides with lipid model systems and subsequent lipid reorganization: thermodynamic and structural characterization. J Pept Sci 15(3):200–209

    Article  CAS  PubMed  Google Scholar 

  43. Alves ID et al (2011) Relationships between membrane binding, affinity and cell internalization efficacy of a cell-penetrating peptide: penetratin as a case study. PLoS One 6(9):e24096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jobin ML, Alves ID (2014) On the importance of electrostatic interactions between cell penetrating peptides and membranes: a pathway toward tumor cell selectivity? Biochimie 107(Pt A):154–159

    Article  CAS  PubMed  Google Scholar 

  45. Patel LN, Zaro JL, Shen WC (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24(11):1977–1992

    Article  CAS  PubMed  Google Scholar 

  46. Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8(8):603–612

    Article  CAS  PubMed  Google Scholar 

  47. Futaki S, Hirose H, Nakase I (2013) Arginine-rich peptides: methods of translocation through biological membranes. Curr Pharm Des 19(16):2863–2868

    Article  CAS  PubMed  Google Scholar 

  48. Wu X, Gehring W (2014) Cellular uptake of the Antennapedia homeodomain polypeptide by macropinocytosis. Biochem Biophys Res Commun 443(4):1136–1140

    Article  CAS  PubMed  Google Scholar 

  49. Zahid M, Robbins PD (2015) Cell-type specific penetrating peptides: therapeutic promises and challenges. Molecules 20(7):13055–13070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Orange JS, May MJ (2008) Cell penetrating peptide inhibitors of nuclear factor-kappa B. Cell Mol Life Sci 65(22):3564–3591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sayers EJ et al (2014) Distal phenylalanine modification for enhancing cellular delivery of fluorophores, proteins and quantum dots by cell penetrating peptides. J Control Release 195:55–62

    Article  CAS  PubMed  Google Scholar 

  52. Stewart KM, Horton KL, Kelley SO (2008) Cell-penetrating peptides as delivery vehicles for biology and medicine. Org Biomol Chem 6(13):2242–2255

    Article  CAS  PubMed  Google Scholar 

  53. Yang Y et al (2014) PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide-doxorubicin conjugate for tumor-specific therapy. Biomaterials 35(14):4368–4381

    Article  CAS  PubMed  Google Scholar 

  54. Raucher D, Ryu JS (2015) Cell-penetrating peptides: strategies for anticancer treatment. Trends Mol Med 21(9):560–570

    Article  CAS  PubMed  Google Scholar 

  55. Bolhassani A (2011) Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta 1816(2):232–246

    CAS  PubMed  Google Scholar 

  56. Dissanayake S et al (2017) Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J Control Release 250:62–76

    Article  CAS  PubMed  Google Scholar 

  57. Ueda Y et al (2012) Induction of autophagic cell death of glioma-initiating cells by cell-penetrating D-isomer peptides consisting of Pas and the p53 C-terminus. Biomaterials 33(35):9061–9069

    Article  CAS  PubMed  Google Scholar 

  58. Araki D et al (2010) Cell-penetrating D-isomer peptides of p53 C-terminus: long-term inhibitory effect on the growth of bladder cancer. Urology 75(4):813–819

    Article  PubMed  Google Scholar 

  59. Snyder EL et al (2004) Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biol 2(2):E36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Aroui S et al (2009) Efficient induction of apoptosis by doxorubicin coupled to cell-penetrating peptides compared to unconjugated doxorubicin in the human breast cancer cell line MDA-MB 231. Cancer Lett 285(1):28–38

    Article  CAS  PubMed  Google Scholar 

  61. Aroui S et al (2010) Cytotoxicity, intracellular distribution and uptake of doxorubicin and doxorubicin coupled to cell-penetrating peptides in different cell lines: a comparative study. Biochem Biophys Res Commun 391(1):419–425

    Article  CAS  PubMed  Google Scholar 

  62. Cheng H et al (2015) Activable cell-penetrating peptide conjugated prodrug for tumor targeted drug delivery. ACS Appl Mater Interfaces 7(29):16061–16069

    Article  CAS  PubMed  Google Scholar 

  63. Löfgren K et al (2008) Antiprion properties of prion protein-derived cell-penetrating peptides. FASEB J 22(7):2177–2184

    Article  PubMed  CAS  Google Scholar 

  64. Ezzat K et al (2011) PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Res 39(12):5284–5298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Garibotto FM et al (2011) Penetratin analogues acting as antifungal agents. Eur J Med Chem 46(1):370–377

    Article  CAS  PubMed  Google Scholar 

  66. Gomarasca M et al (2017) Bacterium-derived cell-penetrating peptides deliver gentamicin to kill intracellular pathogens. Antimicrob Agents Chemother 61(4). https://doi.org/10.1128/AAC.02545-16

  67. Delcroix M, Riley LW (2010) Cell-penetrating peptides for antiviral drug development. Pharmaceuticals (Basel) 3(3):448–470

    Article  CAS  Google Scholar 

  68. Moulton JD, Jiang S (2009) Gene knockdowns in adult animals: PPMOs and vivo-morpholinos. Molecules 14(3):1304–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bright R et al (2004) Protein kinase C delta mediates cerebral reperfusion injury in vivo. J Neurosci 24(31):6880–6888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vaslin A et al (2011) Excitotoxicity-induced endocytosis mediates neuroprotection by TAT-peptide-linked JNK inhibitor. J Neurochem 119(6):1243–1252

    Article  CAS  PubMed  Google Scholar 

  71. Hirt L et al (2004) D-JNKI1, a cell-penetrating c-Jun-N-terminal kinase inhibitor, protects against cell death in severe cerebral ischemia. Stroke 35(7):1738–1743

    Article  CAS  PubMed  Google Scholar 

  72. Kilic E, Kilic U, Hermann DM (2006) TAT fusion proteins against ischemic stroke: current status and future perspectives. Front Biosci 11:1716–1721

    Article  CAS  PubMed  Google Scholar 

  73. Xu W, Zhou M, Baudry M (2008) Neuroprotection by cell permeable TAT-mGluR1 peptide in ischemia: synergy between carrier and cargo sequences. Neuroscientist 14(5):409–414

    Article  CAS  Google Scholar 

  74. Lee J et al (2005) Transdermal delivery of interferon-gamma (IFN-gamma) mediated by penetratin, a cell-permeable peptide. Biotechnol Appl Biochem 42(Pt 2):169–173

    CAS  PubMed  Google Scholar 

  75. Kamada H et al (2007) Creation of novel cell-penetrating peptides for intracellular drug delivery using systematic phage display technology originated from tat transduction domain. Biol Pharm Bull 30(2):218–223

    Article  CAS  PubMed  Google Scholar 

  76. Rothbard JB et al (2000) Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 6(11):1253–1257

    Article  CAS  PubMed  Google Scholar 

  77. Kim YC, Ludovice PJ, Prausnitz MR (2007) Transdermal delivery enhanced by magainin pore-forming peptide. J Control Release 122(3):375–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gautam A et al (2016) Topical delivery of protein and peptide using novel cell penetrating peptide IMT-P8. Sci Rep 6:26278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lim S et al (2015) dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis. Nat Commun 6:8244

    Article  CAS  PubMed  Google Scholar 

  80. Lin T et al (2016) Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides. Acta Pharm Sin B 6(4):352–358

    Article  PubMed  PubMed Central  Google Scholar 

  81. Keeler J (2005) Understanding NMR spectroscopy. Wiley, Chichester

    Google Scholar 

  82. Levitt HM (2008) Spin dynamics: basics of nuclear magnetic resonance, 2nd edn. Wiley, Chichester

    Google Scholar 

  83. Mäler L, Gräslund A (2011) NMR studies of three-dimensional structure and positioning of CPPs in membrane model systems. Methods Mol Biol 683:57–67

    Article  PubMed  CAS  Google Scholar 

  84. Maniti O et al (2010) Distinct behaviour of the homeodomain derived cell penetrating peptide penetratin in interaction with different phospholipids. PLoS One 5(12):e15819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mäler L (2013) Solution NMR studies of cell-penetrating peptides in model membrane systems. Adv Drug Deliv Rev 65(8):1002–1011

    Article  PubMed  CAS  Google Scholar 

  86. Pourmousa M, Karttunen M (2013) Early stages of interactions of cell-penetrating peptide penetratin with a DPPC bilayer. Chem Phys Lipids 169:85–94

    Article  CAS  PubMed  Google Scholar 

  87. Breton RC, Reynolds WF (2013) Using NMR to identify and characterize natural products. Nat Prod Rep 30(4):501–524

    Article  CAS  PubMed  Google Scholar 

  88. Castañar L, Parella T (2015) Recent advances in small molecule NMR: improved HSQC and HSQMBC experiments. Annu Rep NMR Spectrosc 84:163–232

    Article  CAS  Google Scholar 

  89. Kwan AH et al (2011) Macromolecular NMR spectroscopy for the non-spectroscopist. FEBS J 278(5):687–703

    Article  CAS  PubMed  Google Scholar 

  90. Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33(4):199–211

    Article  CAS  PubMed  Google Scholar 

  91. Favier A, Brutscher B (2011) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49(1):9–15

    Article  CAS  PubMed  Google Scholar 

  92. Bhunia A et al (2009) NMR structural studies of the Ste11 SAM domain in the dodecyl phosphocholine micelle. Proteins 74(2):328–343

    Article  CAS  PubMed  Google Scholar 

  93. Bhunia A et al (2011) NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity. J Biol Chem 286(27):24394–24406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Clore GM, Gronenborn AM (1969) Theory and applications of the transferred nuclear overhauser effect to the study of the conformations of small ligands bound to proteins. J Magn Reson 48(3):402–417

    Google Scholar 

  95. Wang Z et al (1993) Membrane-bound conformation of a signal peptide: a transferred nuclear Overhauser effect analysis. Biochemistry 32(50):13991–13999

    Article  CAS  PubMed  Google Scholar 

  96. Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed Engl 42(8):864–890

    Article  CAS  PubMed  Google Scholar 

  97. Calle LP, Cañada FJ, Jiménez-Barbero J (2011) Application of NMR methods to the study of the interaction of natural products with biomolecular receptors. Nat Prod Rep 28(6):1118–1125

    Article  CAS  PubMed  Google Scholar 

  98. Kneller DGK, Irwin D (1993) UCSF Sparky an NMR display, annotation and assignment tool. J Cell Biochem 53(S17C):254

    Google Scholar 

  99. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Book  Google Scholar 

  100. Wishart DS et al (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5(1):67–81

    Article  CAS  PubMed  Google Scholar 

  101. Bera S et al (2016) Structural elucidation of the cell-penetrating penetratin peptide in model membranes at the atomic level: probing hydrophobic interactions in the blood-brain barrier. Biochemistry 55(35):4982–4996

    Article  CAS  PubMed  Google Scholar 

  102. Ma L et al (2007) In vitro and in vivo evaluation of Alexa Fluor 680-bombesin[7-14]NH2 peptide conjugate, a high-affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor. Mol Imaging 6(3):171–180

    Article  CAS  PubMed  Google Scholar 

  103. Bhunia A, Bhattacharjya S, Chatterjee S (2012) Applications of saturation transfer difference NMR in biological systems. Drug Discov Today 17(9–10):505–513

    Article  CAS  PubMed  Google Scholar 

  104. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38:1784–1788

    Article  CAS  Google Scholar 

  105. Pereira A et al (2009) Functional cell-based screening and saturation transfer double-difference NMR have identified haplosamate A as a cannabinoid receptor agonist. ACS Chem Biol 4(2):139–144

    Article  CAS  PubMed  Google Scholar 

  106. Haselhorst T, Lamerz AC, Itzstein M (2009) Saturation transfer difference NMR spectroscopy as a technique to investigate protein-carbohydrate interactions in solution. Methods Mol Biol 534:375–386

    CAS  PubMed  Google Scholar 

  107. Herfurth L et al (2005) Comparative epitope mapping with saturation transfer difference NMR of sialyl Lewis(a) compounds and derivatives bound to a monoclonal antibody. J Med Chem 48(22):6879–6886

    Article  CAS  PubMed  Google Scholar 

  108. Farrow NA et al (1994) Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33(19):5984–6003

    Article  CAS  PubMed  Google Scholar 

  109. Jaremko Ł et al (2015) The quest for simplicity: remarks on the free-approach models. J Phys Chem B 119(36):11978–11987

    Article  CAS  PubMed  Google Scholar 

  110. Bera S et al (2016) Biophysical insights into the membrane interaction of the core amyloid-forming Aβ40 fragment K16-K28 and its role in the pathogenesis of Alzheimer’s disease. Phys Chem Chem Phys 18:16890

    Article  CAS  PubMed  Google Scholar 

  111. Franco R et al (2017) Probing conformational exchange dynamics in a short-lived protein folding intermediate by real-time relaxation-dispersion NMR. J Am Chem Soc 139(3):1065–1068

    Article  CAS  PubMed  Google Scholar 

  112. Loria JP, Rance M, Palmer AG (1999) A relaxation-compensated Carr−Purcell−Meiboom−Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121(10):2331–2332

    Article  CAS  Google Scholar 

  113. Chiliveri SC, Deshmukh MV (2016) Recent excitements in protein NMR: large proteins and biologically relevant dynamics. J Biosci 41(4):787–803

    Article  CAS  PubMed  Google Scholar 

  114. Yamamoto K et al (2010) Use of a copper-chelated lipid speeds up NMR measurements from membrane proteins. J Am Chem Soc 132(20):6929–6931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry 39(18):5355–5365

    Article  CAS  PubMed  Google Scholar 

  116. Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109(9):4108–4139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278(5340):1111–1114

    Article  CAS  PubMed  Google Scholar 

  118. de Alba E, Tjandra N (2004) Residual dipolar couplings in protein structure determination. Methods Mol Biol 278:89–106

    PubMed  Google Scholar 

  119. Deschamps M, Campbell ID, Boyd J (2005) Residual dipolar couplings and some specific models for motional averaging. J Magn Reson 172(1):118–132

    Article  CAS  PubMed  Google Scholar 

  120. Chen K, Tjandra N (2012) The use of residual dipolar coupling in studying proteins by NMR. Top Curr Chem 326:47–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Johnson SC Jr (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc 34:203–256

    Article  CAS  Google Scholar 

  122. Yao S et al (2014) Measuring translational diffusion coefficients of peptides and proteins by PFG-NMR using band-selective RF pulses. Eur Biophys J 43(6–7):331–339

    Article  CAS  PubMed  Google Scholar 

  123. Ghosh A et al (2016) NMR structure and binding of esculentin-1a (1-21)NH2 and its diastereomer to lipopolysaccharide: correlation with biological functions. Biochim Biophys Acta 1858(4):800–812

    Article  CAS  PubMed  Google Scholar 

  124. Hinton PD, Johnson SC (1993) Diffusion ordered 2D NMR spectroscopy of phospholipid vesicles: determination of vesicle size distributions. J Phys Chem 97(35):9064–9072

    Article  CAS  Google Scholar 

  125. Dufourc EJ et al (1992) Dynamics of phosphate head groups in biomembranes. Comprehensive analysis using phosphorus-31 nuclear magnetic resonance lineshape and relaxation time measurements. Biophys J 61(1):42–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Burnell EE, Cullis PR, de Kruijff B (1980) Effects of tumbling and lateral diffusion on phosphatidylcholine model membrane 31P-NMR lineshapes. Biochim Biophys Acta 603(1):63–69

    Article  CAS  PubMed  Google Scholar 

  127. Schubert R et al (1986) Structural changes in membranes of large unilamellar vesicles after binding of sodium cholate. Biochemistry 25(18):5263–5269

    Article  CAS  PubMed  Google Scholar 

  128. Holzgrabe U, Wawer I, Diehl B (2008) NMR spectroscopy in drug development and analysis. Wiley. WILEY-VCH Verlag GmbH, D-69469 Weinheim (Federal Republic of Germany)

    Google Scholar 

  129. Traïkia M et al (2000) Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and 31P-nuclear magnetic resonance. Eur Biophys J 29(3):184–195

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Institutional fund (Plan Project-II), CSIR, and Indo-Swedish (DST-VR) research grant. S.B. thanks CSIR-UGC, Govt. of India, for senior research fellowship. A.B. thanks Prof. Kalipada Pahan, Rush University Medical Center, for in vivo data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Bhunia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bera, S., Bhunia, A. (2019). Cell-Penetrating Peptides as Theranostics Against Impaired Blood-Brain Barrier Permeability: Implications for Pathogenesis and Therapeutic Treatment of Neurodegenerative Disease. In: Barichello, T. (eds) Blood-Brain Barrier. Neuromethods, vol 142. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8946-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8946-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8945-4

  • Online ISBN: 978-1-4939-8946-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics