Skip to main content

Cryotherapy: A Novel Method for Virus Eradication in Economically Important Plant Species

  • Protocol
  • First Online:
Plant Cell Culture Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1815))

Abstract

Virus diseases have been a great threat to production of economically important crops. In practice, the use of virus-free planting material is an effective strategy to control viral diseases. Cryotherapy, developed based on cryopreservation, is a novel plant biotechnology tool for virus eradication. Comparing to the traditional meristem culture for virus elimination, cryotherapy resulted in high efficiency of pathogen eradication. In general, cryotherapy includes seven major steps: (1) introduction of infected plant materials into in vitro cultures, (2) shoot tip excision, (3) tolerance induction of explants to dehydration and subsequent freezing in liquid nitrogen (LN), (4) a short-time treatment of explants in LN, (5) warming and post-culture for regeneration, (6) re-establishment of regenerated plants in greenhouse conditions, and (7) virus indexing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loebenstein G, Akad F (2006) The local lesion response. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. Springer, Dordrecht, pp 99–124. https://doi.org/10.1007/1-4020-3780-5_5

    Chapter  Google Scholar 

  2. Hadidi A, Barba M (2011) Economic impact of pome and stone fruit viruses and viroids. In: Hadidi A, Barba M, Candresse TH, Jelkmann W (eds) Virus and virus-like diseases of pome and stone fruits. APS Press, Paul, MN, pp 1–7. http://hdl.handle.net/11698/52779

    Google Scholar 

  3. Faccioli G, Marani F (1998) Virus elimination by meristem tip culture and tip micrografting. Plant virus disease control. APS Press, St. Paul, MN, pp 346–380

    Google Scholar 

  4. Mink G, Wample R, Howell W (1998) Heat treatment of perennial plants to eliminate phytoplasmas, viruses and viroids while maintaining plant survival. Plant virus disease control. APS Press, St. Paul, MN, pp 332–345

    Google Scholar 

  5. Laimer M, Barba M (2011) Elimination of systemic pathogens by thermotherapy, tissue culture, or in vitro micrografting. In: Hadidi A, Barba M, Candresse TH, Jelkmann W (eds) Virus and virus-like diseases of pome and stone fruits. Paul, MN, APS Press, pp 389–393. http://hdl.handle.net/11698/52862

    Google Scholar 

  6. EPPO (1998) Certification schemes PM4/1–26. European and Mediterranean Plant Protection Organization, Paris

    Google Scholar 

  7. Loebenstein G, Thottappilly G (2013) Virus and virus-like diseases of major crops in developing countries. Springer-Science + Business Media, Berlin. https://doi.org/10.1007/978-94-007-0792-7

    Book  Google Scholar 

  8. Brink JA, Woodward BR, DaSilva EJ (1998) Plant biotechnology: a tool for development in Africa. Electron J Biotechnol 1:14–15. https://doi.org/10.4067/S0717-34581998000300004

    Article  Google Scholar 

  9. Cieślińska M, Rutkowski K (2008) Effect of Apple chlorotic leaf spot virus on yield and quality of fruits from ‘Golden delicious’ and ‘Sampion’ apple trees. Acta Hortic 781:119–124. https://doi.org/10.17660/ActaHortic.2008.781.17

    Article  Google Scholar 

  10. Li JW, Wang B, Song XM et al (2013) Potato leafroll virus (PLRV) and Potato virus Y (PVY) influence vegetative growth, physiological metabolism, and microtuber production of in vitro-grown shoots of potato (Solanum tuberosum L.). Plant Cell Tiss Org 114:313–324. https://doi.org/10.1007/s11240-013-0327-x

    Article  CAS  Google Scholar 

  11. Koike H, Makita H, Tsukahara K (2008) Effect of an apple chlorotic leaf spot virus-free M.9 rootstock on the growth of apple trees. Hortic J 62:499–504. https://doi.org/10.2503/jjshs.62.499

    Article  Google Scholar 

  12. Plopa C, Preda S (2013) Elimination of Apple mosaic virus by tissue culture of some infected apple cultivars. Acta Hortic 981:517–522. https://doi.org/10.17660/ActaHortic.2013.981.83

    Article  Google Scholar 

  13. Quak F (1977) Meristem culture and virus free plants. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue and organ culture. Springer, Berlin, Heidelberg, pp 598–615. https://doi.org/10.1007/978-3-662-02279-5_5

    Chapter  Google Scholar 

  14. Huang SC, Millikan DF (1980) In vitro micrografting of apple shoot tips. Hortscience 15:741–743

    Google Scholar 

  15. Dobránszki J, Da SJ (2010) Micropropagation of apple—a review. Biotechnol Adv 28:462–488. https://doi.org/10.1016/j.biotechadv.2010.02.008

    Article  PubMed  CAS  Google Scholar 

  16. Ucman R, ŽEl J, Ravnikar M (1998) Thermotherapy in virus elimination from garlic: influences on shoot multiplication from meristems and bulb formation in vitro. Sci Hortic (Amsterdam) 73:193–202. https://doi.org/10.1016/S0304-4238(98)00074-0

    Article  Google Scholar 

  17. Paprstein F, Sedlak J, Polak J et al (2008) Results of in vitro thermotherapy of apple cultivars. Plant Cell Tiss Org 94:347–352. https://doi.org/10.1007/s11240-008-9342-8

    Article  Google Scholar 

  18. Tan RR, Wang LP, Hong N, Wang GP (2010) Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. Plant Cell Tiss Org 101:229–235. https://doi.org/10.1007/s11240-010-9681-0

    Article  Google Scholar 

  19. Wang L, Wang G, Hong N et al (2006) Effect of thermotherapy on elimination of Apple stem grooving virus and Apple chlorotic leaf spot virus for in vitro-cultured pear shoot tips. Hortscience 41:729–732

    Google Scholar 

  20. Wang QC, Valkonen JPT (2009) Cryotherapy of shoot tips: novel pathogen eradication method. Trends Plant Sci 14:119–122. https://doi.org/10.1016/j.tplants.2008.11.010

    Article  PubMed  CAS  Google Scholar 

  21. Wang Q, Panis B, Engelmann F et al (2009) Cryotherapy of shoot tips: a technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. Ann Appl Biol 154:351–363. https://doi.org/10.1111/j.1744-7348.2008.00308.x

    Article  Google Scholar 

  22. Brison M, de Boucaud MT, Pierronnet A, Dosba F (1997) Effect of cryopreservation on the sanitary state of a cv Prunus rootstock experimentally contaminated with Plum Pox Potyvirus. Plant Sci 123:189–196. https://doi.org/10.1016/S0168-9452(97)04581-0

    Article  CAS  Google Scholar 

  23. Helliot B, Panis B, Poumay Y et al (2002) Cryopreservation for the elimination of cucumber mosaic and banana streak viruses from banana (Musa spp.). Plant Cell Rep 20:1117–1122. https://doi.org/10.1007/s00299-002-0458-8

    Article  CAS  Google Scholar 

  24. Wang Q, Mawassi M, Li P et al (2003) Elimination of grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Sci 165:321–327. https://doi.org/10.1016/S0168-9452(03)00091-8

    Article  CAS  Google Scholar 

  25. Wang Q, Liu Y, Xie Y, You M (2006) Cryotherapy of potato shoot tips for efficient elimination of Potato leafroll virus (PLRV) and Potato virus Y (PVY). Potato Res 49:119–129. https://doi.org/10.1007/s11540-006-9011-4

    Article  Google Scholar 

  26. Ding F, Jin S, Hong N et al (2008) Vitrification–cryopreservation, an efficient method for eliminating Candidatus Liberobacter asiaticus, the citrus Huanglongbing pathogen, from in vitro adult shoot tips. Plant Cell Rep 27:241–250. https://doi.org/10.1007/s00299-007-0467-8

    Article  PubMed  CAS  Google Scholar 

  27. Wang Q, Valkonen J (2008) Efficient elimination of sweetpotato little leaf phytoplasma from sweet potato by cryotherapy of shoot tips. Plant Pathol 57:338–347. https://doi.org/10.1111/j.1365-3059.2007.01710.x

    Article  Google Scholar 

  28. Wang Q, Cuellar WJ, Rayamäkl ML et al (2008) Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Mol Plant Pathol 9:237–250. https://doi.org/10.1111/j.1364-3703.2007.00456.x

    Article  PubMed  CAS  Google Scholar 

  29. Wang Q, Valkonen J (2008) Elimination of two viruses which interact synergistically from sweet potato by shoot tip culture and cryotherapy. J Virol Methods 154:135–145. https://doi.org/10.1016/j.jviromet.2008.08.006

    Article  PubMed  CAS  Google Scholar 

  30. Bayati S, Shams-Bakhsh M, Moini A (2011) Elimination of grapevine virus A (GVA) by cryotherapy and electrotherapy. J Agr Sci Technol 13:442–450

    Google Scholar 

  31. Hee Shin J, Kyoon Kang D, Keun Sohn J (2013) Production of yam mosaic virus (ymv)-free Dioscorea opposita plants by cryotherapy of shoot-tips. CryoLetters 34:149–157

    Google Scholar 

  32. Taglienti A, Tiberini A, Barba M (2013) Cryotherapy: a new tool for the elimination of artichoke viruses. J Plant Pathol 95:597–602

    Google Scholar 

  33. Şekerz MG, Süzerer V, Elibuyuk I, Çiftçi YÖ (2015) In vitro elimination of PPV from infected apricot shoot tips via chemotherapy and cryotherapy. Int J Agric Biol 17:1066–1070. https://doi.org/10.17957/IJAB/15.0024

    Article  CAS  Google Scholar 

  34. Li BQ, Feng CH, Hu LY et al (2016) Shoot tip culture and cryopreservation for eradication of Apple stem pitting virus (ASPV) and Apple stem grooving virus (ASGV) from apple rootstocks ‘M9’ and ‘M26’. Ann Appl Biol 168:142–150. https://doi.org/10.1111/aab.12250

    Article  CAS  Google Scholar 

  35. Romadanova NV, Mishustina SA, Gritsenko DA et al (2016) Cryotherapy as a method for reducing the virus infection of apples (Malus sp.). CryoLetters 37:1–9

    PubMed  Google Scholar 

  36. Vieira RL, da Silva AL, Zaffari GR et al (2015) Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips. Acta Physiol Plant 37:1733. https://doi.org/10.1007/s11738-014-1733-3

    Article  Google Scholar 

  37. Jeon SM, Naing AH, Kim H-H et al (2016) Elimination of Chrysanthemum stunt viroid and Chrysanthemum chlorotic mottle viroid from infected Chrysanthemum by cryopreservation. Protoplasma 253:1135–1144. https://doi.org/10.1007/s00709-015-0874-6

    Article  PubMed  CAS  Google Scholar 

  38. White PR (1934) Multiplication of the viruses of tobacco and Aucuba mosaics in growing excised tomato root tips. The Rockefeller Institute, USA, p 581

    Google Scholar 

  39. Wang MR, Li BQ, Feng CH, Wang QC (2016) Culture of shoot tips from adventitious shoots can eradicate Apple stem pitting virus but fails in Apple stem grooving virus. Plant Cell Tiss Org 125:283–291. https://doi.org/10.1007/s11240-016-0948-y

    Article  CAS  Google Scholar 

  40. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  41. Feng CH, Cui ZH, Li BQ et al (2013) Duration of sucrose preculture is critical for shoot regrowth of in vitro-grown apple shoot-tips cryopreserved by encapsulation-dehydration. Plant Cell Tiss Org 112:369–378. https://doi.org/10.1007/s11240-012-0245-3

    Article  CAS  Google Scholar 

  42. Kushnarenko SV, Romadanova NV, Reed BM (2009) Cold acclimation improves regrowth of cryopreserved apple shoot tips. CryoLetters 30:47–54

    PubMed  CAS  Google Scholar 

  43. Sakai A, Matsumoto T (1999) Cryopreservation of in vitro-cultured axillary shoot tips of Vitis by vitrification. Acta Hortic 538:177–181. https://doi.org/10.17660/ActaHortic.2000.538.28

    Article  Google Scholar 

  44. Niino T, Sakai A (1992) Cryopreservation of alginate-coated in vitro-grown shoot tips of apple, pear and mulberry. Plant Sci 87:199–206. https://doi.org/10.1016/0168-9452(92)90151-B

    Article  CAS  Google Scholar 

  45. Forni C, Braglia R, Beninati S et al (2010) Polyamine concentration, transglutaminase activity and changes in protein synthesis during cryopreservation of shoot tips of apple variety Annurca. CryoLetters 31:413–425

    PubMed  CAS  Google Scholar 

  46. Wang Q, Tanne E, Arav A, Gafny R (2000) Cryopreservation of in vitro-grown shoot tips of grapevine by encapsulation-dehydration. Plant Cell Tiss Org 63:41–46. https://doi.org/10.1023/A:1006411829738

    Article  CAS  Google Scholar 

  47. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nuclear cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33. https://doi.org/10.1007/BF00232130

    Article  PubMed  CAS  Google Scholar 

  48. Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73. https://doi.org/10.1016/0168-9452(93)90189-7

    Article  CAS  Google Scholar 

  49. Li BQ, Feng CH, Wang MR et al (2015) Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification and encapsulation-dehydration procedures. J Biotechnol 214:182–191. https://doi.org/10.1016/j.jbiotec.2015.09.030

    Article  PubMed  CAS  Google Scholar 

  50. Halmagyi A, VăLimăReanu S, Coste A et al (2010) Cryopreservation of Malus shoot tips and subsequent plant regeneration. Rom Biotechnol Lett 15:79–85

    CAS  Google Scholar 

  51. Wang QC, Tang H, Quan Y, Zhou GR (1994) Phenol induced browning and establishment of shoot-tip explants of ‘Fuji’ apple and ‘Jinhua’ pear cultured in vitro. J Hortic Sci 69:833–839. https://doi.org/10.1080/14620316.1994.11516519

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the fund provided by the Department of Science and Technology of Shaanxi Province (2014KTCL02-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao-Chun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, MR., Chen, L., Zhang, Z., Blystad, DR., Wang, QC. (2018). Cryotherapy: A Novel Method for Virus Eradication in Economically Important Plant Species. In: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Plant Cell Culture Protocols. Methods in Molecular Biology, vol 1815. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8594-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8594-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8593-7

  • Online ISBN: 978-1-4939-8594-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics