Skip to main content

Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale

  • Protocol
  • First Online:
Planarian Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1774))

Abstract

The establishment of size and shape remains a fundamental challenge in biological research that planarian flatworms uniquely epitomize. Planarians can regenerate complete and perfectly proportioned animals from tiny and arbitrarily shaped tissue pieces; they continuously renew all organismal cell types from abundant pluripotent stem cells, yet maintain shape and anatomy in the face of constant turnover; they grow when feeding and literally degrow when starving, while scaling form and function over as much as a 40-fold range in body length or an 800-fold change in total cell numbers. This review provides a broad overview of the current understanding of the planarian stem cell system, the mechanisms that pattern the planarian body plan and how the interplay between patterning signals and cell fate choices orchestrates regeneration. What emerges is a conceptual framework for the maintenance and regeneration of the planarian body plan on basis of the interplay between pluripotent stem cells and self-organizing patterns and further, the general utility of planarians as model system for the mechanistic basis of size and shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weigmann K, Cohen SM, Lehner CF (1997) Cell cycle progression, growth and patterning in imaginal discs despite inhibition of cell division after inactivation of drosophila Cdc2 kinase. Development 124:3555–3563

    CAS  PubMed  Google Scholar 

  2. Neufeld TP, de la Cruz AF, Johnston LA, Edgar BA (1998) Coordination of growth and cell division in the drosophila wing. Cell 93:1183–1193

    Article  CAS  PubMed  Google Scholar 

  3. Morgan TH (1898) Regneration in Planaria Maculata. Science 7:196–197

    Article  Google Scholar 

  4. Driesch H (1891) Entwicklungsmechanische Studien: I. Der Werth der beiden ersten Furchungszellen in der Echinodermenentwicklung. Experimentelle Erzeugung von Theil- und Doppelbildungen. Zeitschrift fuer Zoologie 53:160–178

    Google Scholar 

  5. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144. https://doi.org/10.1016/j.cell.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  6. Lecuit T, Le Goff L (2007) Orchestrating size and shape during morphogenesis. Nature 450:189–192. https://doi.org/10.1038/nature06304

    Article  CAS  PubMed  Google Scholar 

  7. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  8. Driesch H (1944) Biologische Probleme höherer Ordnung. Verlag von Johann Ambrosius Barth, Leipzig

    Google Scholar 

  9. Palade GE (1953) An electron microscope study of the mitochondrial structure. J Histochem Cytochem 1:188–211. https://doi.org/10.1177/1.4.188

    Article  CAS  PubMed  Google Scholar 

  10. Gey GO (1954) Some aspects of the constitution and behavior of normal and malignant cells maintained in continuous culture. Harvey Lect 50:154–229

    PubMed  Google Scholar 

  11. Beadle GW, Tatum EL (1941) Genetic control of biochemical reactions in neurospora. Proc Natl Acad Sci U S A 27:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mouton S, Willems M, Houthoofd W, Bert W, Braeckman BP (2011) Lack of metabolic ageing in the long-lived flatworm Schmidtea polychroa. Exp Gerontol 46:755–761. https://doi.org/10.1016/j.exger.2011.04.003

    Article  PubMed  Google Scholar 

  13. Pearson BJ, Sánchez Alvarado A (2008) Regeneration, stem cells, and the evolution of tumor suppression. Cold Spring Harb Symp Quant Biol 73:565–572. https://doi.org/10.1101/sqb.2008.73.045

    Article  CAS  PubMed  Google Scholar 

  14. Tan TCJ, Rahman R, Jaber-Hijazi F, Felix DA, Chen C, Louis EJ et al (2012) Telomere maintenance and telomerase activity are differentially regulated in asexual and sexual worms. Proc Natl Acad Sci U S A 109:4209–4214. https://doi.org/10.1073/pnas.1118885109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Reddien PW, Sánchez Alvarado A (2004) Fundamentals of planarian regeneration. Annu Rev Cell Dev Biol 20:725–757. https://doi.org/10.1146/annurev.cellbio.20.010403.095114

    Article  CAS  PubMed  Google Scholar 

  16. Wagner DE, Wang IE, Reddien PW (2011) Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332:811–816. https://doi.org/10.1126/science.1203983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saló E, Agata K (2012) Planarian regeneration: a classic topic claiming new attention. Int J Dev Biol 56:3–4. https://doi.org/10.1387/ijdb.123495es

    Article  PubMed  Google Scholar 

  18. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168

    Article  CAS  PubMed  Google Scholar 

  19. Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430

    Article  CAS  PubMed  Google Scholar 

  20. Nichols J, Smith A (2012) Pluripotency in the embryo and in culture. Cold Spring Harb Perspect Biol 4:a008128–a008128. https://doi.org/10.1101/cshperspect.a008128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baguñà J (2012) The planarian neoblast: the rambling history of its origin and some current black boxes. Int J Dev Biol 56:19–37. https://doi.org/10.1387/ijdb.113463jb

    Article  CAS  PubMed  Google Scholar 

  22. Baguna J, Romero R (1981) Quantitative-analysis of cell types during growth, degrowth and regeneration in the planarians Dugesia mediterranea and Dugesia tigrina. Hydrobiologia 84:181–194. https://doi.org/10.1007/BF00026179

    Article  Google Scholar 

  23. Lensch MW, Daley GQ (2004) Origins of mammalian hematopoiesis: in vivo paradigms and in vitro models. Curr Top Dev Biol 60:127–196. https://doi.org/10.1016/S0070-2153(04)60005-6

    Article  CAS  PubMed  Google Scholar 

  24. Newmark PA, Sánchez Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153. https://doi.org/10.1006/dbio.2000.9645

    Article  CAS  PubMed  Google Scholar 

  25. Orii H, Sakurai T, Watanabe K (2005) Distribution of the stem cells (neoblasts) in the planarian Dugesia japonica. Dev Genes Evol 215:143–157. https://doi.org/10.1007/s00427-004-0460-y

    Article  CAS  PubMed  Google Scholar 

  26. Salvetti A, Rossi L, Deri P, Batistoni R (2000) AnMCM2-related gene is expressed in proliferating cells of intact and regenerating planarians. Dev Dyn 218:603–614. https://doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1016>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  27. Morita M, Best JB (1984) Electron microscopic studies of planarian regeneration. J Exp Zool 229:425–436

    Article  Google Scholar 

  28. Forsthoefel DJ, Park AE, Newmark PA (2011) Stem cell-based growth, regeneration, and remodeling of the planarian intestine. Dev Biol 356:445–459. https://doi.org/10.1016/j.ydbio.2011.05.669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baguñà J (1976) Mitosis in the intact and regenerating planarian Dugesia mediterranea n.sp. I. J Exp Zool 195:53–64

    Article  Google Scholar 

  30. Hayashi T, Motoishi M, Yazawa S, Itomi K, Tanegashima C, Nishimura O et al (2011) A LIM-homeobox gene is required for differentiation of Wnt-expressing cells at the posterior end of the planarian body. Development 138:3679–3688. https://doi.org/10.1242/dev.060194

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  32. Shibata N, Umesono Y, Orii H, Sakurai T, Watanabe K, Agata K (1999) Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev Biol 206:73–87. https://doi.org/10.1006/dbio.1998.9130

    Article  CAS  PubMed  Google Scholar 

  33. Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sánchez Alvarado A (2005) SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310:1327–1330. https://doi.org/10.1126/science.1116110

    Article  CAS  PubMed  Google Scholar 

  34. Hayashi T, Asami M, Higuchi S, Shibata N, Agata K (2006) Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting. Develop Growth Differ 48:371–380. https://doi.org/10.1111/j.1440-169X.2006.00876.x

    Article  Google Scholar 

  35. Rossi L, Salvetti A, Marincola FM, Lena A, Deri P, Mannini L et al (2007) Deciphering the molecular machinery of stem cells: a look at the neoblast gene expression profile. Genome Biol 8:R62. https://doi.org/10.1186/gb-2007-8-4-r62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eisenhoffer GT, Kang H, Sánchez Alvarado A (2008) Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 3:327–339. https://doi.org/10.1016/j.stem.2008.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wagner DE, Ho JJ, Reddien PW (2012) Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 10:299–311. https://doi.org/10.1016/j.stem.2012.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Solana J, Kao D, Mihaylova Y, Jaber-Hijazi F, Malla S, Wilson R et al (2012) Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNA-seq, RNAi and irradiation approach. Genome Biol 13:R19. https://doi.org/10.1186/gb-2012-13-3-r19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Friedländer MR, Adamidi C, Han T, Lebedeva S, Isenbarger TA, Hirst M et al (2009) High-resolution profiling and discovery of planarian small RNAs. Proc Natl Acad Sci U S A 106:11546–11551. https://doi.org/10.1073/pnas.0905222106

    Article  PubMed  PubMed Central  Google Scholar 

  40. Blythe MJ, Kao D, Malla S, Rowsell J, Wilson R, Evans D et al (2010) A dual platform approach to transcript discovery for the planarian Schmidtea mediterranea to establish RNAseq for stem cell and regeneration biology. PLoS One 5:e15617. https://doi.org/10.1371/journal.pone.0015617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tu KC, Cheng L-C, Tk Vu H, Lange JJ, McKinney SA, Seidel CW et al (2015) Egr-5 is a post-mitotic regulator of planarian epidermal differentiation. elife 4:e10501. https://doi.org/10.7554/eLife.10501

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhu SJ, Hallows SE, Currie KW, Xu C, Pearson BJ (2015) A mex3 homolog is required for differentiation during planarian stem cell lineage development. elife 4. https://doi.org/10.7554/eLife.07025

  43. Bardeen CR, Baetjer FH (1904) The inhibitive action of the roentgen rays on regeneration in planarians. J Exp Zool 1:191–195

    Article  Google Scholar 

  44. Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Sánchez Alvarado A (2005) Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell 8:635–649. https://doi.org/10.1016/j.devcel.2005.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wurtzel O, Cote LE, Poirier A, Satija R, Regev A, Reddien PW (2015) A generic and cell-type-specific wound response precedes regeneration in planarians. Dev Cell 35:632–645. https://doi.org/10.1016/j.devcel.2015.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Molinaro AM, Pearson BJ (2016) In silico lineage tracing through single cell transcriptomics identifies a neural stem cell population in planarians. Genome Biol 17:87. https://doi.org/10.1186/s13059-016-0937-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Wolfswinkel JC, Wagner DE, Reddien PW (2014) Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell 15:326–339. https://doi.org/10.1016/j.stem.2014.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wurtzel O, Oderberg IM, Reddien PW (2017) Planarian epidermal stem cells respond to positional cues to promote cell-type diversity. Dev Cell 40:491–504.e5. https://doi.org/10.1016/j.devcel.2017.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Labbé RM, Irimia M, Currie KW, Lin A, Zhu SJ, Brown DDR et al (2012) A comparative transcriptomic analysis reveals conserved features of stem cell pluripotency in planarians and mammals. Stem Cells 30:1734–1745. https://doi.org/10.1002/stem.1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shibata N, Hayashi T, Fukumura R, Fujii J, Kudome-Takamatsu T, Nishimura O et al (2012) Comprehensive gene expression analyses in pluripotent stem cells of a planarian, Dugesia japonica. Int J Dev Biol 56:93–102. https://doi.org/10.1387/ijdb.113434ns

    Article  CAS  PubMed  Google Scholar 

  51. Onal P, Grün D, Adamidi C, Rybak A, Solana J, Mastrobuoni G et al (2012) Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. EMBO J 31:2755–2769. https://doi.org/10.1038/emboj.2012.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rouhana L, Shibata N, Nishimura O, Agata K (2010) Different requirements for conserved post-transcriptional regulators in planarian regeneration and stem cell maintenance. Dev Biol 341:429–443. https://doi.org/10.1016/j.ydbio.2010.02.037

    Article  CAS  PubMed  Google Scholar 

  53. Guo T, Peters AHFM, Newmark PA (2006) A Bruno-like gene is required for stem cell maintenance in planarians. Dev Cell 11:159–169. https://doi.org/10.1016/j.devcel.2006.06.004

    Article  CAS  PubMed  Google Scholar 

  54. Yoshida-Kashikawa M, Shibata N, Takechi K, Agata K (2007) DjCBC-1, a conserved DEAD box RNA helicase of the RCK/p54/Me31B family, is a component of RNA-protein complexes in planarian stem cells and neurons. Dev Dyn 236:3436–3450. https://doi.org/10.1002/dvdy.21375

    Article  CAS  PubMed  Google Scholar 

  55. Palakodeti D, Smielewska M, Lu Y-C, Yeo GW, Graveley BR (2008) The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA 14:1174–1186. https://doi.org/10.1261/rna.1085008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakagawa H, Ishizu H, Hasegawa R, Kobayashi K, Matsumoto M (2012) Drpiwi-1 is essential for germline cell formation during sexualization of the planarian Dugesia ryukyuensis. Dev Biol 361:167–176. https://doi.org/10.1016/j.ydbio.2011.10.014

    Article  CAS  PubMed  Google Scholar 

  57. Shibata N, Kashima M, Ishiko T, Nishimura O, Rouhana L, Misaki K et al (2016) Inheritance of a nuclear PIWI from pluripotent stem cells by somatic descendants ensures differentiation by silencing transposons in planarian. Dev Cell 37:226–237. https://doi.org/10.1016/j.devcel.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  58. Gurley KA, Rink JC, Sánchez Alvarado A (2008) Beta-catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319:323–327. https://doi.org/10.1126/science.1150029

    Article  CAS  PubMed  Google Scholar 

  59. Iglesias M, Gómez-Skarmeta JL, Saló E, Adell T (2008) Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians. Development 135:1215–1221. https://doi.org/10.1242/dev.020289

    Article  CAS  PubMed  Google Scholar 

  60. Petersen CP, Reddien PW (2008) Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319:327–330. https://doi.org/10.1126/science.1149943

    Article  CAS  PubMed  Google Scholar 

  61. Grebbin BM, Schulte D (2017) PBX1 as pioneer factor: a case still open. Front Cell Dev Biol 5:9. https://doi.org/10.3389/fcell.2017.00009

    Article  PubMed  PubMed Central  Google Scholar 

  62. Vásquez-Doorman C, Petersen CP (2014) Zic-1 expression in planarian neoblasts after injury controls anterior pole regeneration. PLoS Genet 10:e1004452. https://doi.org/10.1371/journal.pgen.1004452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stückemann T, Cleland JP, Werner S, Thi-Kim Vu H, Bayersdorf R, Liu S-Y et al (2017) Antagonistic self-organizing patterning systems control maintenance and regeneration of the anteroposterior axis in planarians. Dev Cell 40:248–263.e4. https://doi.org/10.1016/j.devcel.2016.12.024

    Article  CAS  PubMed  Google Scholar 

  64. Lapan SW, Reddien PW (2011) dlx and sp6-9 control optic cup regeneration in a prototypic eye. PLoS Genet 7:e1002226. https://doi.org/10.1371/journal.pgen.1002226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Oderberg IM, Li DJ, Scimone ML, Gaviño MA, Reddien PW (2017) Landmarks in existing tissue at wounds are utilized to generate pattern in regenerating tissue. Curr Biol 27:733–742. https://doi.org/10.1016/j.cub.2017.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Witchley JN, Mayer M, Wagner DE, Owen JH, Reddien PW (2013) Muscle cells provide instructions for planarian regeneration. Cell Rep 4:633–641. https://doi.org/10.1016/j.celrep.2013.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gurley KA, Elliott SA, Simakov O, Schmidt HA, Holstein TW, Sánchez Alvarado A (2010) Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. Dev Biol 347:24–39. https://doi.org/10.1016/j.ydbio.2010.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Agata K, Saito Y, Nakajima E (2007) Unifying principles of regeneration I: epimorphosis versus morphallaxis. Develop Growth Differ 49:73–78. https://doi.org/10.1111/j.1440-169X.2007.00919.x

    Article  Google Scholar 

  69. Rink JC, Gurley KA, Elliott SA, Sánchez Alvarado A (2009) Planarian Hh signaling regulates regeneration polarity and links Hh pathway evolution to cilia. Science 326:1406–1410. https://doi.org/10.1126/science.1178712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reddien PW, Bermange AL, Kicza AM, Sánchez Alvarado A (2007) BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development 134:4043–4051. https://doi.org/10.1242/dev.007138

    Article  CAS  PubMed  Google Scholar 

  71. Molina MD, Neto A, Maeso I, Gómez-Skarmeta JL, Saló E, Cebrià F (2011) Noggin and noggin-like genes control dorsoventral axis regeneration in planarians. Curr Biol 21:300–305. https://doi.org/10.1016/j.cub.2011.01.016

    Article  CAS  PubMed  Google Scholar 

  72. Blassberg RA, Felix DA, Tejada Romero B, Aboobaker AA (2013) PBX/extradenticle is required to re-establish axial structures and polarity during planarian regeneration. Development 140:730–739. https://doi.org/10.1242/dev.082982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Meinhardt H (2006) Primary body axes of vertebrates: generation of a near-Cartesian coordinate system and the role of Spemann-type organizer. Dev Dyn 235:2907–2919. https://doi.org/10.1002/dvdy.20952

    Article  CAS  PubMed  Google Scholar 

  74. Ross KG, Currie KW, Pearson BJ, Zayas RM (2017) Nervous system development and regeneration in freshwater planarians. Wiley Interdiscip Rev Dev Biol 6:e266. https://doi.org/10.1002/wdev.266

    Article  Google Scholar 

  75. Lapan SW, Reddien PW (2012) Transcriptome analysis of the planarian eye identifies ovo as a specific regulator of eye regeneration. Cell Rep 2:294–307. https://doi.org/10.1016/j.celrep.2012.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Forsthoefel DJ, James NP, Escobar DJ, Stary JM, Vieira AP, Waters FA et al (2012) An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians. Dev Cell 23:691–704. https://doi.org/10.1016/j.devcel.2012.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Thi-Kim Vu H, Rink JC, McKinney SA, McClain M, Lakshmanaperumal N, Alexander R et al (2015) Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ. elife 4. https://doi.org/10.7554/eLife.07405

  78. Rink JC, Vu HT-K, Sánchez Alvarado A (2011) The maintenance and regeneration of the planarian excretory system are regulated by EGFR signaling. Development 138:3769–3780. https://doi.org/10.1242/dev.066852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Scimone ML, Srivastava M, Bell GW, Reddien PW (2011) A regulatory program for excretory system regeneration in planarians. Development 138:4387–4398. https://doi.org/10.1242/dev.068098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. LoCascio SA, Lapan SW, Reddien PW (2017) Eye absence does not regulate planarian stem cells during eye regeneration. Dev Cell 40:381–391.e3. https://doi.org/10.1016/j.devcel.2017.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rouhana L, Vieira AP, Roberts-Galbraith RH, Newmark PA (2012) PRMT5 and the role of symmetrical dimethylarginine in chromatoid bodies of planarian stem cells. Development 139:1083–1094. https://doi.org/10.1242/dev.076182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fernandéz-Taboada E, Moritz S, Zeuschner D, Stehling M, Schöler HR, Saló E et al (2010) Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation. Development 137:1055–1065. https://doi.org/10.1242/dev.042564

    Article  CAS  PubMed  Google Scholar 

  83. Salvetti A, Rossi L, Lena A, Batistoni R, Deri P, Rainaldi G et al (2005) DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 132:1863–1874. https://doi.org/10.1242/dev.01785

    Article  CAS  PubMed  Google Scholar 

  84. Shibata N, Rouhana L, Agata K (2010) Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians. Develop Growth Differ 52:27–41. https://doi.org/10.1111/j.1440-169X.2009.01155.x

    Article  CAS  Google Scholar 

  85. Wang Y, Stary JM, Wilhelm JE, Newmark PA (2010) A functional genomic screen in planarians identifies novel regulators of germ cell development. Genes Dev 24:2081–2092. https://doi.org/10.1101/gad.1951010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Voronina E, Seydoux G, Sassone-Corsi P, Nagamori I (2011) RNA granules in germ cells. Cold Spring Harb Perspect Biol 3:a002774. https://doi.org/10.1101/cshperspect.a002774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ewen-Campen B, Schwager EE, Extavour CGM (2010) The molecular machinery of germ line specification. Mol Reprod Dev 77:3–18. https://doi.org/10.1002/mrd.21091

    Article  CAS  PubMed  Google Scholar 

  88. Newmark PA, Wang Y, Chong T (2008) Germ cell specification and regeneration in planarians. Cold Spring Harb Symp Quant Biol 73:573–581. https://doi.org/10.1101/sqb.2008.73.022

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Zayas RM, Guo T, Newmark PA (2007) Nanos function is essential for development and regeneration of planarian germ cells. Proc Natl Acad Sci U S A 104:5901–5906. https://doi.org/10.1073/pnas.0609708104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sato K, Shibata N, Orii H, Amikura R, Sakurai T, Agata K et al (2006) Identification and origin of the germline stem cells as revealed by the expression of nanos-related gene in planarians. Develop Growth Differ 48:615–628. https://doi.org/10.1111/j.1440-169X.2006.00897.x

    Article  CAS  Google Scholar 

  91. Handberg-Thorsager M, Saló E (2007) The planarian nanos-like gene Smednos is expressed in germline and eye precursor cells during development and regeneration. Dev Genes Evol 217:403–411. https://doi.org/10.1007/s00427-007-0146-3

    Article  CAS  PubMed  Google Scholar 

  92. Nakagawa H, Ishizu H, Chinone A, Kobayashi A, Matsumoto M (2012) The Dr-nanos gene is essential for germ cell specification in the planarian Dugesia ryukyuensis. Int J Dev Biol 56:165–171. https://doi.org/10.1387/ijdb.113433hn

    Article  CAS  PubMed  Google Scholar 

  93. Juliano CE, Swartz SZ, Wessel GM (2010) A conserved germline multipotency program. Development 137:4113–4126. https://doi.org/10.1242/dev.047969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ciosk R (2006) Translational regulators maintain totipotency in the caenorhabditis elegans germline. Science 311:851–853. https://doi.org/10.1126/science.1122491

    Article  CAS  PubMed  Google Scholar 

  95. Seydoux G, Braun RE (2006) Pathway to totipotency: lessons from germ cells. Cell 127:891–904. https://doi.org/10.1016/j.cell.2006.11.016

    Article  CAS  PubMed  Google Scholar 

  96. Anderson P, Kedersha N (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10:430–436. https://doi.org/10.1038/nrm2694

    Article  CAS  PubMed  Google Scholar 

  97. Solana J, Lasko P, Romero R (2009) Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Dev Biol 328:410–421. https://doi.org/10.1016/j.ydbio.2009.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rossi L, Iacopetti P, Salvetti A (2012) Stem cells and neural signalling: the case of neoblast recruitment and plasticity in low dose X-ray treated planarians. Int J Dev Biol 56:135–142. https://doi.org/10.1387/ijdb.123505lr

    Article  CAS  PubMed  Google Scholar 

  99. Koh FM, Sachs M, Guzman-Ayala M, Ramalho-Santos M (2010) Parallel gateways to pluripotency: open chromatin in stem cells and development. Curr Opin Genet Dev 20:492–499. https://doi.org/10.1016/j.gde.2010.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C et al (2008) Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2:437–447. https://doi.org/10.1016/j.stem.2008.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M (2011) Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 12:36–47. https://doi.org/10.1038/nrm3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rossi A, Ross EJ, Jack A, Sánchez Alvarado A (2014) Molecular cloning and characterization of SL3: a stem cell-specific SL RNA from the planarian Schmidtea mediterranea. Gene 533:156–167. https://doi.org/10.1016/j.gene.2013.09.101

    Article  CAS  PubMed  Google Scholar 

  103. Coward SJ (1974) Chromatoid bodies in somatic cells of the planarian: observations on their behavior during mitosis. Anat Rec 180:533–545. https://doi.org/10.1002/ar.1091800312

    Article  CAS  PubMed  Google Scholar 

  104. Lei K, Thi-Kim Vu H, Mohan RD, McKinney SA, Seidel CW, Alexander R et al (2016) Egf signaling directs neoblast repopulation by regulating asymmetric cell division in planarians. Dev Cell 38:413–429. https://doi.org/10.1016/j.devcel.2016.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Solana J, Irimia M, Ayoub S, Orejuela MR, Zywitza V, Jens M et al (2016) Conserved functional antagonism of CELF and MBNL proteins controls stem cell-specific alternative splicing in planarians. elife 5:1193. https://doi.org/10.7554/eLife.16797

    Article  Google Scholar 

  106. Ng H-H, Surani MA (2011) The transcriptional and signalling networks of pluripotency. Nat Cell Biol 13:490–496. https://doi.org/10.1038/ncb0511-490

    Article  CAS  PubMed  Google Scholar 

  107. Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17:183–193. https://doi.org/10.1038/nrm.2016.8

    Article  CAS  PubMed  Google Scholar 

  108. Hay ED, Coward SJ (1975) Fine structure studies on the planarian, Dugesia. I. Nature of the “neoblast” and other cell types in noninjured worms. J Ultrastruct Res 50:1–21

    Article  CAS  PubMed  Google Scholar 

  109. Duncan EM, Chitsazan AD, Seidel CW, Sánchez Alvarado A (2015) Set1 and MLL1/2 target distinct sets of functionally different genomic loci in vivo. Cell Rep 13:2741–2755. https://doi.org/10.1016/j.celrep.2015.11.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kao D, Mihaylova Y, Hughes S, Lai A, Aboobaker A (2017) Epigenetic analyses of the planarian genome reveals conservation of bivalent promoters in animal stem cells. bioRxiv. https://doi.org/10.1101/122135

  111. Arwert EN, Hoste E, Watt FM (2012) Epithelial stem cells, wound healing and cancer. Nat Rev Cancer 12:170–180. https://doi.org/10.1038/nrc3217

    Article  CAS  PubMed  Google Scholar 

  112. Prehoda KE (2009) Polarization of drosophila neuroblasts during asymmetric division. Cold Spring Harb Perspect Biol 1:a001388. https://doi.org/10.1101/cshperspect.a001388

    Article  PubMed  PubMed Central  Google Scholar 

  113. van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260. https://doi.org/10.1146/annurev.physiol.010908.163145

    Article  CAS  PubMed  Google Scholar 

  114. Simons BD, Clevers H (2011) Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145:851–862. https://doi.org/10.1016/j.cell.2011.05.033

    Article  CAS  PubMed  Google Scholar 

  115. Schultz E (1904) Ueber Reduktionen: 1. Ueber Hungererscheinungen bei Planaria lactea. Arch f Entwicklungsmech d Organismen 18:555–577

    Article  Google Scholar 

  116. Baguñà J, Romero R (1981) Quantitative analysis of cell types during growth, degrowth and regeneration in the planarians Dugesia mediterranea and Dugesia tigrina. Hydrobiologia 84:184–191

    Article  Google Scholar 

  117. Oviedo NJ, Newmark PA, Sánchez Alvarado A (2003) Allometric scaling and proportion regulation in the freshwater planarian Schmidtea mediterranea. Dev Dyn 226:326–333. https://doi.org/10.1002/dvdy.10228

    Article  CAS  PubMed  Google Scholar 

  118. Takeda H, Nishimura K, Agata K (2009) Planarians maintain a constant ratio of different cell types during changes in body size by using the stem cell system. Zool Sci 26:805–813. https://doi.org/10.2108/zsj.26.805

    Article  Google Scholar 

  119. González-Estévez C, Felix DA, Rodríguez-Esteban G, Aboobaker AA (2012) Decreased neoblast progeny and increased cell death during starvation-induced planarian degrowth. Int J Dev Biol 56(1-3):83–91. https://doi.org/10.1387/ijdb.113452cg

    Article  CAS  PubMed  Google Scholar 

  120. Baguñà J, Romero R, Saló E, Collet J, Auladell C, Ribas M et al (1990) Growth, degrowth and regeneration as developmental phenomena in adult fresh water planarians. In: Marthy H-J (ed) Experimental embryology in aquatic plants and animals. Plenum Press, New York, pp 129–162

    Chapter  Google Scholar 

  121. Baguñà J (1974) Dramatic mitotic response in planarians after feeding, and a hypothesis for the control mechanism. J Exp Zool 190:117–122

    Article  PubMed  Google Scholar 

  122. Kang H, Sánchez Alvarado A (2009) Flow cytometry methods for the study of cell-cycle parameters of planarian stem cells. Dev Dyn 238:1111–1117. https://doi.org/10.1002/dvdy.21928

    Article  CAS  PubMed  Google Scholar 

  123. Wenemoser D, Reddien PW (2010) Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Dev Biol 344:979–991. https://doi.org/10.1016/j.ydbio.2010.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Baguñà J (1976) Mitosis in the intact and regenerating planarian Dugesia mediterranea n.sp. II. J Exp Zool 195:65–79

    Article  Google Scholar 

  125. Aboobaker AA (2011) Planarian stem cells: a simple paradigm for regeneration. Trends Cell Biol 21:304–311. https://doi.org/10.1016/j.tcb.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  126. Forsthoefel DJ, Newmark PA (2009) Emerging patterns in planarian regeneration. Curr Opin Genet Dev 19:412–420. https://doi.org/10.1016/j.gde.2009.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Saló E, Baguñà J (1984) Regeneration and pattern formation in planarians. I. The pattern of mitosis in anterior and posterior regeneration in Dugesia (G) tigrina, and a new proposal for blastema formation, J Embryol Exp Morphol 83:63–80.

    Google Scholar 

  128. Cowles MW, Hubert A, Zayas RM (2012) A Lissencephaly-1 homologue is essential for mitotic progression in the planarian Schmidtea mediterranea. Dev Dyn 241(5):901–910. https://doi.org/10.1002/dvdy.23775

    Article  CAS  PubMed  Google Scholar 

  129. Baguñà J, Saló E, Romero R (1989) Effects of activators and antagonists of the neuropeptides substance P and substance K on cell proliferation in planarians. Int J Dev Biol 33:261–266

    PubMed  Google Scholar 

  130. Saló E, Baguñà J (1986) Stimulation of cellular proliferation and differentiation in the intact and regenerating planarian Dugesia(G) tigrina by the neuropeptide substance P. J Exp Zool 237:129–135. https://doi.org/10.1002/jez.1402370117

    Article  PubMed  Google Scholar 

  131. Yazawa S, Umesono Y, Hayashi T, Tarui H, Agata K (2009) Planarian Hedgehog/Patched establishes anterior-posterior polarity by regulating Wnt signaling. Proc Natl Acad Sci U S A 106:22329–22334. https://doi.org/10.1073/pnas.0907464106

    Article  PubMed  PubMed Central  Google Scholar 

  132. Tasaki J, Shibata N, Sakurai T, Agata K, Umesono Y (2011) Role of c-Jun N-terminal kinase activation in blastema formation during planarian regeneration. Develop Growth Differ 53:389–400. https://doi.org/10.1111/j.1440-169X.2011.01254.x

    Article  CAS  Google Scholar 

  133. Oviedo NJ, Levin M (2007) Smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis. Development 134:3121–3131. https://doi.org/10.1242/dev.006635

    Article  CAS  PubMed  Google Scholar 

  134. Nusse R (2008) Wnt signaling and stem cell control. Cell Res 18:523–527. https://doi.org/10.1038/cr.2008.47

    Article  CAS  PubMed  Google Scholar 

  135. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398. https://doi.org/10.1038/nrc2389

    Article  CAS  PubMed  Google Scholar 

  136. Fraguas S, Barberán S, Cebrià F (2011) EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. Dev Biol 354:87–101. https://doi.org/10.1016/j.ydbio.2011.03.023

    Article  CAS  PubMed  Google Scholar 

  137. Sakurai T, Lee H, Kashima M, Saito Y, Hayashi T, Kudome-Takamatsu T et al (2012) The planarian P2X homolog in the regulation of asexual reproduction. Int J Dev Biol 56:173–182. https://doi.org/10.1387/ijdb.113439ts

    Article  CAS  PubMed  Google Scholar 

  138. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35. https://doi.org/10.1038/nrm3025

    Article  CAS  PubMed  Google Scholar 

  139. Peiris TH, Weckerle F, Ozamoto E, Ramirez D, Davidian D, García-Ojeda ME et al (2012) TOR signaling regulates planarian stem cells and controls localized and organismal growth. J Cell Sci 125:1657–1665. https://doi.org/10.1242/jcs.104711

    Article  CAS  PubMed  Google Scholar 

  140. Tu KC, Pearson BJ, Sánchez Alvarado A (2012) TORC1 is required to balance cell proliferation and cell death in planarians. Dev Biol 365(2):458–469. https://doi.org/10.1016/j.ydbio.2012.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. González-Estévez C, Felix DA, Smith MD, Paps J, Morley SJ, James V et al (2012) SMG-1 and mTORC1 act antagonistically to regulate response to injury and growth in planarians. PLoS Genet 8:e1002619. https://doi.org/10.1371/journal.pgen.1002619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lin AYT, Pearson BJ (2014) Planarian yorkie/YAP functions to integrate adult stem cell proliferation, organ homeostasis and maintenance of axial patterning. Development 141:1197–1208. https://doi.org/10.1242/dev.101915

    Article  CAS  PubMed  Google Scholar 

  143. Hwang B, An Y, Agata K, Umesono Y (2015) Two distinct roles of the yorkie/yap gene during homeostasis in the planarian Dugesia japonica. Develop Growth Differ 57:209–217. https://doi.org/10.1111/dgd.12195

    Article  CAS  Google Scholar 

  144. Piccolo S, Dupont S, Cordenonsi M (2014) The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 94:1287–1312. https://doi.org/10.1152/physrev.00005.2014

    Article  CAS  PubMed  Google Scholar 

  145. Demircan T, Berezikov E (2013) The Hippo pathway regulates stem cells during homeostasis and regeneration of the flatworm Macrostomum lignano. Stem Cells Dev 22:2174–2185. https://doi.org/10.1089/scd.2013.0006

    Article  PubMed  Google Scholar 

  146. Miller CM, Newmark PA (2012) An insulin-like peptide regulates size and adult stem cells in planarians. Int J Dev Biol 56(1-3):75–82. https://doi.org/10.1387/ijdb.113443cm

    Article  CAS  PubMed  Google Scholar 

  147. Pellettieri J, Fitzgerald P, Watanabe S, Mancuso J, Green DR, Sánchez Alvarado A (2010) Cell death and tissue remodeling in planarian regeneration. Dev Biol 338:76–85. https://doi.org/10.1016/j.ydbio.2009.09.015

    Article  CAS  PubMed  Google Scholar 

  148. Agata K, Umesono Y (2008) Brain regeneration from pluripotent stem cells in planarian. Philos Trans R Soc Lond Ser B Biol Sci 363:2071–2078. https://doi.org/10.1098/rstb.2008.2260

    Article  CAS  Google Scholar 

  149. Nishimura K, Kitamura Y, Inoue T, Umesono Y, Sano S, Yoshimoto K et al (2007) Reconstruction of dopaminergic neural network and locomotion function in planarian regenerates. Dev Neurobiol 67:1059–1078. https://doi.org/10.1002/dneu.20377

    Article  CAS  PubMed  Google Scholar 

  150. Nishimura K, Kitamura Y, Inoue T, Umesono Y, Yoshimoto K, Takeuchi K et al (2007) Identification and distribution of tryptophan hydroxylase (TPH)-positive neurons in the planarian Dugesia japonica. Neurosci Res 59:101–106. https://doi.org/10.1016/j.neures.2007.05.014

    Article  CAS  PubMed  Google Scholar 

  151. Nishimura K, Kitamura Y, Umesono Y, Takeuchi K, Takata K, Taniguchi T et al (2008) Identification of glutamic acid decarboxylase gene and distribution of GABAergic nervous system in the planarian Dugesia japonica. Neuroscience 153:1103–1114. https://doi.org/10.1016/j.neuroscience.2008.03.026

    Article  CAS  PubMed  Google Scholar 

  152. Nishimura K, Kitamura Y, Inoue T, Umesono Y, Yoshimoto K, Taniguchi T et al (2008) Characterization of tyramine beta-hydroxylase in planarian Dugesia japonica: cloning and expression. Neurochem Int 53:184–192. https://doi.org/10.1016/j.neuint.2008.09.006

    Article  CAS  PubMed  Google Scholar 

  153. Wang IE, Lapan SW, Scimone ML, Clandinin TR, Reddien PW (2016) Hedgehog signaling regulates gene expression in planarian glia. Elife 5:905. https://doi.org/10.7554/eLife.16996

    Article  Google Scholar 

  154. Roberts-Galbraith RH, Brubacher JL, Newmark PA (2016) A functional genomics screen in planarians reveals regulators of whole-brain regeneration. Elife 5:a000505. https://doi.org/10.7554/eLife.17002

    Article  Google Scholar 

  155. Reuter H, März M, Vogg MC, Eccles D, Grífol-Boldú L, Wehner D et al (2015) β-catenin-dependent control of positional information along the AP body axis in planarians involves a teashirt family member. Cell Rep 10:253–265. https://doi.org/10.1016/j.celrep.2014.12.018

    Article  CAS  PubMed  Google Scholar 

  156. Abnave P, Mottola G, Gimenez G, Boucherit N, Trouplin V, Torre C et al (2014) Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection. Cell Host Microbe 16:338–350. https://doi.org/10.1016/j.chom.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  157. Adler CE, Seidel CW, McKinney SA, Sánchez Alvarado A (2014) Selective amputation of the pharynx identifies a FoxA-dependent regeneration program in planaria. Elife 3:e02238. https://doi.org/10.7554/eLife.02238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chong T, Stary JM, Wang Y, Newmark PA (2011) Molecular markers to characterize the hermaphroditic reproductive system of the planarian Schmidtea mediterranea. BMC Dev Biol 11:69. https://doi.org/10.1186/1471-213X-11-69

    Article  PubMed  PubMed Central  Google Scholar 

  159. Shettigar N, Joshi A, Dalmeida R, Gopalkrishna R, Chakravarthy A, Patnaik S et al (2017) Hierarchies in light sensing and dynamic interactions between ocular and extraocular sensory networks in a flatworm. Sci Adv 3:e1603025. https://doi.org/10.1126/sciadv.1603025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Inoue T, Yamashita T, Agata K (2014) Thermosensory signaling by TRPM is processed by brain serotonergic neurons to produce planarian thermotaxis. J Neurosci 34:15701–15714. https://doi.org/10.1523/JNEUROSCI.5379-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Inoue T, Hoshino H, Yamashita T, Shimoyama S, Agata K (2015) Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function. Zool Lett 1:7. https://doi.org/10.1186/s40851-014-0010-z

    Article  Google Scholar 

  162. Higuchi S, Hayashi T, Hori I, Shibata N, Sakamoto H, Agata K (2007) Characterization and categorization of fluorescence activated cell sorted planarian stem cells by ultrastructural analysis. Develop Growth Differ 49:571–581. https://doi.org/10.1111/j.1440-169X.2007.00947.x

    Article  Google Scholar 

  163. Flores NM, Oviedo NJ, Sage J (2016) Essential role for the planarian intestinal GATA transcription factor in stem cells and regeneration. Dev Biol 418:179–188. https://doi.org/10.1016/j.ydbio.2016.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. González-Sastre A, De Sousa N, Adell T, Saló E (2017) The pioneer factor Smed-gata456-1 is required for gut cell differentiation and maintenance in planarians. Int J Dev Biol 61:53–63. https://doi.org/10.1387/ijdb.160321es

    Article  CAS  PubMed  Google Scholar 

  165. Wang C, Han X-S, Li F-F, Huang S, Qin Y-W, Zhao X-X et al (2016) Forkhead containing transcription factor Albino controls tetrapyrrole-based body pigmentation in planarian. Cell Discov 2:16029. https://doi.org/10.1038/celldisc.2016.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Nishimura K, Inoue T, Yoshimoto K, Taniguchi T, Kitamura Y, Agata K (2011) Regeneration of dopaminergic neurons after 6-hydroxydopamine-induced lesion in planarian brain. J Neurochem 119:1217–1231. https://doi.org/10.1111/j.1471-4159.2011.07518.x

    Article  CAS  PubMed  Google Scholar 

  167. Lai A, Kosaka N, Abnave P, Sahu S, Aboobaker A (2017.) 143339) The abrogation of condensin function provides independent evidence for defining the self-renewing population of pluripotent stem cells. bioRxiv. https://doi.org/10.1101/143339

  168. Sahu S, Dattani A, Aboobaker AA (2017) Secrets from immortal worms: what can we learn about biological ageing from the planarian model system? Semin Cell Dev Biol 70:108–121. https://doi.org/10.1016/j.semcdb.2017.08.028

    Article  PubMed  Google Scholar 

  169. Zaret KS, Mango SE (2016) Pioneer transcription factors, chromatin dynamics, and cell fate control. Curr Opin Genet Dev 37:76–81. https://doi.org/10.1016/j.gde.2015.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pearson BJ, Sánchez Alvarado A (2010) A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages. Development 137:213–221. https://doi.org/10.1242/dev.044297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tasaki J, Shibata N, Nishimura O, Itomi K, Tabata Y, Son F et al (2011) ERK signaling controls blastema cell differentiation during planarian regeneration. Development 138:2417–2427. https://doi.org/10.1242/dev.060764

    Article  CAS  PubMed  Google Scholar 

  172. Scimone ML, Meisel J, Reddien PW (2010) The Mi-2-like Smed-CHD4 gene is required for stem cell differentiation in the planarian Schmidtea mediterranea. Development 137:1231–1241. https://doi.org/10.1242/dev.042051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Bonuccelli L, Rossi L, Lena A, Scarcelli V, Rainaldi G, Evangelista M et al (2010) An RbAp48-like gene regulates adult stem cells in planarians. J Cell Sci 123:690–698. https://doi.org/10.1242/jcs.053900

    Article  CAS  PubMed  Google Scholar 

  174. Gomes FLAF, Zhang G, Carbonell F, Correa JA, Harris WA, Simons BD et al (2011) Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development 138:227–235. https://doi.org/10.1242/dev.059683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Currie KW, Molinaro AM, Pearson BJ (2016) Neuronal sources of hedgehog modulate neurogenesis in the adult planarian brain. elife 5:e19735. https://doi.org/10.7554/eLife.19735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Werner S, Vu HT-K, Rink JC (2016) Self-organization in development, regeneration and organoids. Curr Opin Cell Biol 44:1–8. https://doi.org/10.1016/j.ceb.2016.09.002

    Article  CAS  Google Scholar 

  177. Giani VC, Yamaguchi E, Boyle MJ, Seaver EC (2011) Somatic and germline expression of piwi during development and regeneration in the marine polychaete annelid Capitella teleta. EvoDevo 2:10. https://doi.org/10.1186/2041-9139-2-10

    Article  PubMed  PubMed Central  Google Scholar 

  178. Yoshida-Noro C, Tochinai S (2009) Stem cell system in asexual and sexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelida). Develop Growth Differ 52:43–55. https://doi.org/10.1111/j.1440-169X.2009.01149.x

    Article  CAS  Google Scholar 

  179. Rebscher N, Zelada-González F, Banisch TU, Raible F, Arendt D (2007) Vasa unveils a common origin of germ cells and of somatic stem cells from the posterior growth zone in the polychaete Platynereis dumerilii. Dev Biol 306:599–611. https://doi.org/10.1016/j.ydbio.2007.03.521

    Article  CAS  PubMed  Google Scholar 

  180. Ruiz-Trillo I (1999) Acoel flatworms: earliest extant bilaterian metazoans, not members of platyhelminthes. Science 283:1919–1923. https://doi.org/10.1126/science.283.5409.1919

    Article  CAS  PubMed  Google Scholar 

  181. Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ et al (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–258. https://doi.org/10.1038/nature09676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M et al (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444:85–88. https://doi.org/10.1038/nature05241

    Article  CAS  PubMed  Google Scholar 

  183. Srivastava M, Mazza-Curll KL, van Wolfswinkel JC, Reddien PW (2014) Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Curr Biol 24:1107–1113. https://doi.org/10.1016/j.cub.2014.03.042

    Article  CAS  PubMed  Google Scholar 

  184. De Mulder K, Kuales G, Pfister D, Willems M, Egger B, Salvenmoser W et al (2009) Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Dev Biol 9:69. https://doi.org/10.1186/1471-213X-9-69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Alié A, Leclère L, Jager M, Dayraud C, Chang P, Le Guyader H et al (2011) Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of “germline genes” with stemness. Dev Biol 350:183–197. https://doi.org/10.1016/j.ydbio.2010.10.019

    Article  CAS  PubMed  Google Scholar 

  186. Mochizuki K, Nishimiya-Fujisawa C, Fujisawa T (2001) Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev Genes Evol 211:299–308

    Article  CAS  PubMed  Google Scholar 

  187. Rebscher N, Volk C, Teo R, Plickert G (2008) The germ plasm component Vasa allows tracing of the interstitial stem cells in the cnidarian Hydractinia echinata. Dev Dyn 237:1736–1745. https://doi.org/10.1002/dvdy.21562

    Article  CAS  PubMed  Google Scholar 

  188. Denker E, Manuel M, Leclère L, Le Guyader H, Rabet N (2008) Ordered progression of nematogenesis from stem cells through differentiation stages in the tentacle bulb of Clytia hemisphaerica (Hydrozoa, Cnidaria). Dev Biol 315:99–113. https://doi.org/10.1016/j.ydbio.2007.12.023

    Article  CAS  PubMed  Google Scholar 

  189. Mochizuki K, Sano H, Kobayashi S, Nishimiya-Fujisawa C, Fujisawa T (2000) Expression and evolutionary conservation of nanos-related genes in Hydra. Dev Genes Evol 210:591–602

    Article  CAS  PubMed  Google Scholar 

  190. Funayama N, Nakatsukasa M, Mohri K, Masuda Y, Agata K (2010) Piwi expression in archeocytes and choanocytes in demosponges: insights into the stem cell system in demosponges. Evol Dev 12:275–287. https://doi.org/10.1111/j.1525-142X.2010.00413.x

    Article  CAS  PubMed  Google Scholar 

  191. Funayama N (2010) The stem cell system in demosponges: insights into the origin of somatic stem cells. Develop Growth Differ 52:1–14. https://doi.org/10.1111/j.1440-169X.2009.01162.x

    Article  CAS  Google Scholar 

  192. Kürn U, Rendulic S, Tiozzo S, Lauzon RJ (2011) Asexual propagation and regeneration in colonial ascidians. Biol Bull 221:43–61

    Article  PubMed  Google Scholar 

  193. Extavour CGM (2007) Evolution of the bilaterian germ line: lineage origin and modulation of specification mechanisms. Integr Comp Biol 47:770–785. https://doi.org/10.1093/icb/icm027

    Article  PubMed  Google Scholar 

  194. Agata K, Nakajima E, Funayama N, Shibata N, Saito Y, Umesono Y (2006) Two different evolutionary origins of stem cell systems and their molecular basis. Semin Cell Dev Biol 17:503–509. https://doi.org/10.1016/j.semcdb.2006.05.004

    Article  CAS  PubMed  Google Scholar 

  195. Blackstone NW, Jasker BD (2003) Phylogenetic considerations of clonality, coloniality, and mode of germline development in animals. J Exp Zool B Mol Dev Evol 297(1):35–47

    Article  PubMed  Google Scholar 

  196. Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47

    Article  CAS  PubMed  Google Scholar 

  197. Wartlick O, Kicheva A, Gonzalez-Gaitan M (2009) Morphogen gradient formation. Cold Spring Harb Perspect Biol 1:a001255. https://doi.org/10.1101/cshperspect.a001255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Jülicher F, Eaton S (2017) Emergence of tissue shape changes from collective cell behaviours. Semin Cell Dev Biol 67:103–112. https://doi.org/10.1016/j.semcdb.2017.04.004

    Article  PubMed  Google Scholar 

  199. Howard J (2009) Mechanical signaling in networks of motor and cytoskeletal proteins. Annu Rev Biophys 38:217–234. https://doi.org/10.1146/annurev.biophys.050708.133732

    Article  CAS  PubMed  Google Scholar 

  200. Etournay R, Popović M, Merkel M, Nandi A, Blasse C, Aigouy B et al (2015) Interplay of cell dynamics and epithelial tension during morphogenesis of the drosophila pupal wing. elife 4:e07090. https://doi.org/10.7554/eLife.07090

    Article  PubMed  PubMed Central  Google Scholar 

  201. Savin T, Kurpios NA, Shyer AE, Florescu P, Liang H, Mahadevan L et al (2011) On the growth and form of the gut. Nature 476:57–62. https://doi.org/10.1038/nature10277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bastock R, Johnston DS (2008) Drosophila oogenesis. Curr Biol 18:R1082–R1087. https://doi.org/10.1016/j.cub.2008.09.011

    Article  CAS  PubMed  Google Scholar 

  203. Ohnishi Y, Huber W, Tsumura A, Kang M, Xenopoulos P, Kurimoto K et al (2014) Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat Cell Biol 16:27–37. https://doi.org/10.1038/ncb2881

    Article  CAS  PubMed  Google Scholar 

  204. De Robertis EM (2009) Spemann's organizer and the self-regulation of embryonic fields. Mech Dev 126:925–941. https://doi.org/10.1016/j.mod.2009.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Green SA, Simões-Costa M, Bronner ME (2015) Evolution of vertebrates as viewed from the crest. Nature 520:474–482. https://doi.org/10.1038/nature14436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Adell T, Cebrià F, Saló E (2010) Gradients in planarian regeneration and homeostasis. Cold Spring Harb Perspect Biol 2:a000505. https://doi.org/10.1101/cshperspect.a000505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Scimone ML, Cote LE, Rogers T, Reddien PW (2016) Two FGFRL-Wnt circuits organize the planarian anteroposterior axis. elife 5:e12845. https://doi.org/10.7554/eLife.12845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lander R, Petersen CP (2016) Wnt, Ptk7, and FGFRL expression gradients control trunk positional identity in planarian regeneration. 5:e12850–eElife. https://doi.org/10.7554/eLife.12850

  209. Iglesias M, Almuedo-Castillo M, Aboobaker AA, Saló E (2011) Early planarian brain regeneration is independent of blastema polarity mediated by the Wnt/β-catenin pathway. Dev Biol 358:68–78. https://doi.org/10.1016/j.ydbio.2011.07.013

    Article  CAS  PubMed  Google Scholar 

  210. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205. https://doi.org/10.1016/j.cell.2012.05.012

    Article  CAS  PubMed  Google Scholar 

  211. Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H et al (2006) Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 11:791–801. https://doi.org/10.1016/j.devcel.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  212. Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K (2006) Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125:509–522. https://doi.org/10.1016/j.cell.2006.02.049

    Article  CAS  PubMed  Google Scholar 

  213. Bartscherer K, Pelte N, Ingelfinger D, Boutros M (2006) Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125:523–533. https://doi.org/10.1016/j.cell.2006.04.009

    Article  CAS  PubMed  Google Scholar 

  214. Alexandre C, Baena-Lopez A, Vincent J-P (2014) Patterning and growth control by membrane-tethered wingless. Nature 505:180–185. https://doi.org/10.1038/nature12879

    Article  CAS  PubMed  Google Scholar 

  215. Onai T, Matsuo-Takasaki M, Inomata H, Aramaki T, Matsumura M, Yakura R et al (2007) XTsh3 is an essential enhancing factor of canonical Wnt signaling in Xenopus axial determination. EMBO J 26:2350–2360. https://doi.org/10.1038/sj.emboj.7601684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Gallet A, Erkner A, Charroux B, Fasano L, Kerridge S (1998) Trunk-specific modulation of wingless signalling in drosophila by teashirt binding to armadillo. Curr Biol 8:893–902

    Article  CAS  PubMed  Google Scholar 

  217. Harris TJC (2012) An introduction to adherens junctions: from molecular mechanisms to tissue development and disease. Subcell Biochem 60:1–5. https://doi.org/10.1007/978-94-007-4186-7_1

    Article  CAS  PubMed  Google Scholar 

  218. Kohn AD, Moon RT (2005) Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 38:439–446. https://doi.org/10.1016/j.ceca.2005.06.022

    Article  CAS  PubMed  Google Scholar 

  219. R. Nusse, The Wnt homepage, Httpweb.Stanford.Edugroupnusselabcgi-Binwnt. (n.d.).

    Google Scholar 

  220. Kakugawa S, Langton PF, Zebisch M, Howell SA, Chang T-H, Liu Y et al (2015) Notum deacylates Wnt proteins to suppress signalling activity. Nature 519:187–192. https://doi.org/10.1038/nature14259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Petersen CP, Reddien PW (2011) Polarized notum activation at wounds inhibits Wnt function to promote planarian head regeneration. Science 332:852–855. https://doi.org/10.1126/science.1202143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Adell T, Saló E, Boutros M, Bartscherer K (2009) Smed-Evi/Wntless is required for beta-catenin-dependent and -independent processes during planarian regeneration. Development 136:905–910. https://doi.org/10.1242/dev.033761

    Article  CAS  PubMed  Google Scholar 

  223. Liu S-Y, Selck C, Friedrich B, Lutz R, Vila-Farré M, Dahl A et al (2013) Reactivating head regrowth in a regeneration-deficient planarian species. Nature 500:81–84. https://doi.org/10.1038/nature12414

    Article  CAS  PubMed  Google Scholar 

  224. Almuedo-Castillo M, Saló E, Adell T (2011) Dishevelled is essential for neural connectivity and planar cell polarity in planarians. Proc Natl Acad Sci U S A 108:2813–2818. https://doi.org/10.1073/pnas.1012090108

    Article  PubMed  PubMed Central  Google Scholar 

  225. Adell T, Marsal M, Saló E (2008) Planarian GSK3s are involved in neural regeneration. Dev Genes Evol 218:89–103. https://doi.org/10.1007/s00427-007-0199-3

    Article  CAS  PubMed  Google Scholar 

  226. Owen JH, Wagner DE, Chen C-C, Petersen CP, Reddien PW (2015) Teashirt is required for head-versus-tail regeneration polarity in planarians. Development 142:1062–1072. https://doi.org/10.1242/dev.119685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Gul IS, Hulpiau P, Saeys Y, van Roy F (2017) Evolution and diversity of cadherins and catenins. Exp Cell Res 358(1):3–9. https://doi.org/10.1016/j.yexcr.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  228. Sureda-Gómez M, Martín-Durán JM, Adell T (2016) Localization of planarian βCATENIN-1 reveals multiple roles during anterior-posterior regeneration and organogenesis. Development 143:4149–4160. https://doi.org/10.1242/dev.135152

    Article  CAS  PubMed  Google Scholar 

  229. Chai G, Ma C, Bao K, Zheng L, Wang X, Sun Z et al (2010) Complete functional segregation of planarian beta-catenin-1 and -2 in mediating Wnt signaling and cell adhesion. J Biol Chem 285:24120–24130. https://doi.org/10.1074/jbc.M110.113662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Korswagen HC, Herman MA, Clevers HC (2000) Distinct beta-catenins mediate adhesion and signalling functions in C. Elegans. Nature 406:527–532. https://doi.org/10.1038/35020099

    Article  CAS  PubMed  Google Scholar 

  231. Almuedo-Castillo M, Sureda-Gómez M, Adell T (2012) Wnt signaling in planarians: new answers to old questions. Int J Dev Biol 56:53–65. https://doi.org/10.1387/ijdb.113451ma

    Article  CAS  PubMed  Google Scholar 

  232. Reddien PW (2011) Constitutive gene expression and the specification of tissue identity in adult planarian biology. Trends Genet 27:277–285. https://doi.org/10.1016/j.tig.2011.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA et al (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433:156–160. https://doi.org/10.1038/nature03158

    Article  CAS  PubMed  Google Scholar 

  234. Roberts-Galbraith RH, Newmark PA (2013) Follistatin antagonizes activin signaling and acts with notum to direct planarian head regeneration. Proc Natl Acad Sci U S A 110:1363–1368. https://doi.org/10.1073/pnas.1214053110

    Article  PubMed  PubMed Central  Google Scholar 

  235. Petersen CP, Reddien PW (2009) A wound-induced Wnt expression program controls planarian regeneration polarity. Proc Natl Acad Sci U S A 106:17061–17066. https://doi.org/10.1073/pnas.0906823106

    Article  PubMed  PubMed Central  Google Scholar 

  236. Chen C-CG, Wang IE, Reddien PW (2013) pbx is required for pole and eye regeneration in planarians. Development 140:719–729. https://doi.org/10.1242/dev.083741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Wolpert L (2016) Positional information and pattern formation. Curr Top Dev Biol 117:597–608. https://doi.org/10.1016/bs.ctdb.2015.11.008

    Article  PubMed  Google Scholar 

  238. Umesono Y, Tasaki J, Nishimura Y, Hrouda M, Kawaguchi E, Yazawa S et al (2013) The molecular logic for planarian regeneration along the anterior-posterior axis. Nature 500:73–76. https://doi.org/10.1038/nature12359

    Article  CAS  PubMed  Google Scholar 

  239. Meinhardt H (2009) Beta-catenin and axis formation in planarians. BioEssays 31:5–9. https://doi.org/10.1002/bies.080193

    Article  PubMed  Google Scholar 

  240. Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou N-H (2012) Gap junctions. Compr Physiol 2:1981–2035. https://doi.org/10.1002/cphy.c110051

    Article  PubMed  Google Scholar 

  241. Levin M (2009) Bioelectric mechanisms in regeneration: unique aspects and future perspectives. Semin Cell Dev Biol 20:543–556. https://doi.org/10.1016/j.semcdb.2009.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  242. Nogi T, Levin M (2005) Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Dev Biol 287:314–335. https://doi.org/10.1016/j.ydbio.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  243. Emmons-Bell M, Durant F, Hammelman J, Bessonov N, Volpert V, Morokuma J et al (2015) Gap junctional blockade stochastically induces different species-specific head anatomies in genetically wild-type girardia dorotocephala flatworms. Int J Mol Sci 16:27865–27896. https://doi.org/10.3390/ijms161126065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Oviedo NJ, Morokuma J, Walentek P, Kema IP, Gu MB, Ahn J-M et al (2010) Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Dev Biol 339:188–199. https://doi.org/10.1016/j.ydbio.2009.12.012

    Article  CAS  PubMed  Google Scholar 

  245. Nogi T, Zhang D, Chan JD, Marchant JS (2009) A novel biological activity of praziquantel requiring voltage-operated Ca2+ channel beta subunits: subversion of flatworm regenerative polarity. PLoS Negl Trop Dis 3:e464. https://doi.org/10.1371/journal.pntd.0000464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Chan JD, Zarowiecki M, Marchant JS (2013) Ca2+ channels and praziquantel: a view from the free world. Parasitol Int 62:619–628. https://doi.org/10.1016/j.parint.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  247. Zhang D, Chan JD, Nogi T, Marchant JS (2011) Opposing roles of voltage-gated Ca2+ channels in neuronal control of regenerative patterning. J Neurosci 31:15983–15995. https://doi.org/10.1523/JNEUROSCI.3029-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Trueb B (2011) Biology of FGFRL1, the fifth fibroblast growth factor receptor. Cell Mol Life Sci 68:951–964. https://doi.org/10.1007/s00018-010-0576-3

    Article  CAS  PubMed  Google Scholar 

  249. Cebrià F, Kobayashi C, Umesono Y, Nakazawa M, Mineta K, Ikeo K et al (2002) FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419:620–624. https://doi.org/10.1038/nature01042

    Article  CAS  PubMed  Google Scholar 

  250. Kobayashi C, Saito Y, Ogawa K, Agata K (2007) Wnt signaling is required for antero-posterior patterning of the planarian brain. Dev Biol 306:714–724. https://doi.org/10.1016/j.ydbio.2007.04.010

    Article  CAS  PubMed  Google Scholar 

  251. Koinuma S, Umesono Y, Watanabe K, Agata K (2000) Planaria FoxA (HNF3) homologue is specifically expressed in the pharynx-forming cells. Gene 259:171–176

    Article  CAS  PubMed  Google Scholar 

  252. Sureda-Gómez M, Pascual-Carreras E, Adell T (2015) Posterior wnts have distinct roles in specification and patterning of the planarian posterior region. Int J Mol Sci 16:26543–26554. https://doi.org/10.3390/ijms161125970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Berger H, Wodarz A, Borchers A (2017) PTK7 faces the wnt in development and disease. Front Cell Dev Biol 5:31. https://doi.org/10.3389/fcell.2017.00031

    Article  PubMed  PubMed Central  Google Scholar 

  254. Pedersen KJ (1976) Scanning electron microscopical observations on epidermal wound healing in the planarian Dugesia tigrina. Roux Arch Dev Biol 179:251–273. https://doi.org/10.1007/BF00848236

    Article  Google Scholar 

  255. Rompolas P, Azimzadeh J, Marshall WF, King SM (2013) Analysis of ciliary assembly and function in planaria. Methods Enzymol 525:245–264. https://doi.org/10.1016/B978-0-12-397944-5.00012-2

    Article  CAS  PubMed  Google Scholar 

  256. De Robertis EM, Sasai Y (1996) A common plan for dorsoventral patterning in Bilateria. Nature 380:37–40. https://doi.org/10.1038/380037a0

    Article  PubMed  Google Scholar 

  257. Arendt D, Nübler-Jung K (1994) Inversion of dorsoventral axis? Nature 371:26–26. https://doi.org/10.1038/371026a0

    Article  CAS  PubMed  Google Scholar 

  258. Brown FD, Prendergast A, Swalla BJ (2008) Man is but a worm: chordate origins. Genesis 46:605–613. https://doi.org/10.1002/dvg.20471

    Article  PubMed  Google Scholar 

  259. Orii H, Watanabe K (2007) Bone morphogenetic protein is required for dorso-ventral patterning in the planarian Dugesia japonica. Develop Growth Differ 49:345–349. https://doi.org/10.1111/j.1440-169X.2007.00931.x

    Article  CAS  Google Scholar 

  260. Molina MD, Saló E, Cebrià F (2007) The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians. Dev Biol 311:79–94. https://doi.org/10.1016/j.ydbio.2007.08.019

    Article  CAS  PubMed  Google Scholar 

  261. Gaviño MA, Reddien PW (2011) A Bmp/Admp regulatory circuit controls maintenance and regeneration of dorsal-ventral polarity in planarians. Curr Biol 21:294–299. https://doi.org/10.1016/j.cub.2011.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Moustakas A, Heldin C-H (2009) The regulation of TGFbeta signal transduction. Development 136:3699–3714. https://doi.org/10.1242/dev.030338

    Article  CAS  PubMed  Google Scholar 

  263. Zinski J, Tajer B, Mullins MC (2017) TGF-β family signaling in early vertebrate development. Cold Spring Harb Perspect Biol:a033274. https://doi.org/10.1101/cshperspect.a033274

    Article  Google Scholar 

  264. Schmierer B, Hill CS (2007) TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8:970–982. https://doi.org/10.1038/nrm2297

    Article  CAS  PubMed  Google Scholar 

  265. De Robertis EM (2006) Spemann’s organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol 7:296–302. https://doi.org/10.1038/nrm1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Grande C, Martín-Durán JM, Kenny NJ, Truchado-García M, Hejnol A (2014) Evolution, divergence and loss of the Nodal signalling pathway: new data and a synthesis across the Bilateria. Int J Dev Biol 58:521–532. https://doi.org/10.1387/ijdb.140133cg

    Article  PubMed  Google Scholar 

  267. Namigai EKO, Kenny NJ, Shimeld SM (2014) Right across the tree of life: the evolution of left-right asymmetry in the Bilateria. Genesis 52:458–470. https://doi.org/10.1002/dvg.22748

    Article  CAS  PubMed  Google Scholar 

  268. Grande C, Patel NH (2009) Lophotrochozoa get into the game: the nodal pathway and left/right asymmetry in bilateria. Cold Spring Harb Symp Quant Biol 74:281–287. https://doi.org/10.1101/sqb.2009.74.044

    Article  CAS  PubMed  Google Scholar 

  269. Brazil DP, Church RH, Surae S, Godson C, Martin F (2015) BMP signalling: agony and antagony in the family. Trends Cell Biol 25:249–264. https://doi.org/10.1016/j.tcb.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  270. Zakin L, De Robertis EM (2010) Extracellular regulation of BMP signaling. Curr Biol 20:R89–R92. https://doi.org/10.1016/j.cub.2009.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Kuraku S, Kuratani S (2011) Genome-wide detection of gene extinction in early mammalian evolution. Genome Biol Evol 3:1449–1462. https://doi.org/10.1093/gbe/evr120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Molina MD, Saló E, Cebrià F (2009) Expression pattern of the expanded noggin gene family in the planarian Schmidtea mediterranea. Gene Expr Patterns 9:246–253. https://doi.org/10.1016/j.gep.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  273. Orii H, Kato K, Agata K, Watanabe K (1998) Molecular cloning of bone morphogenetic protein (BMP) gene from the planarian Dugesia japonica. Zool Sci 15:871–877. https://doi.org/10.2108/zsj.15.871

    Article  CAS  Google Scholar 

  274. Evans TA (2016) Embryonic axon guidance: insights from drosophila and other insects. Curr Opin Insect Sci 18:11–16. https://doi.org/10.1016/j.cois.2016.08.007

    Article  PubMed  Google Scholar 

  275. Cebrià F, Guo T, Jopek J, Newmark PA (2007) Regeneration and maintenance of the planarian midline is regulated by a slit orthologue. Dev Biol 307:394–406. https://doi.org/10.1016/j.ydbio.2007.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Tazaki A, Kato K, Orii H, Agata K, Watanabe K (2002) The body margin of the planarian Dugesia japonica: characterization by the expression of an intermediate filament gene. Dev Genes Evol 212:365–373. https://doi.org/10.1007/s00427-002-0253-0

    Article  CAS  PubMed  Google Scholar 

  277. Currie KW, Brown DDR, Zhu S, Xu C, Voisin V, Bader GD et al (2016) HOX gene complement and expression in the planarian Schmidtea mediterranea. EvoDevo 7:7. https://doi.org/10.1186/s13227-016-0044-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Chédotal A (2007) Slits and their receptors. Adv Exp Med Biol 621:65–80. https://doi.org/10.1007/978-0-387-76715-4_5

    Article  PubMed  Google Scholar 

  279. Cebrià F, Newmark PA (2007) Morphogenesis defects are associated with abnormal nervous system regeneration following roboA RNAi in planarians. Development 134:833–837. https://doi.org/10.1242/dev.02794

    Article  CAS  PubMed  Google Scholar 

  280. Meinhardt H (2004) Models for the generation of the embryonic body axes: ontogenetic and evolutionary aspects. Curr Opin Genet Dev 14:446–454. https://doi.org/10.1016/j.gde.2004.06.012

    Article  CAS  PubMed  Google Scholar 

  281. Elliott SA, Sánchez Alvarado A (2013) The history and enduring contributions of planarians to the study of animal regeneration. Wiley Interdiscip Rev Dev Biol 2:301–326. https://doi.org/10.1002/wdev.82

    Article  CAS  PubMed  Google Scholar 

  282. Kato K, Orii H, Watanabe K, Agata K (1999) The role of dorsoventral interaction in the onset of planarian regeneration. Development 126:1031–1040

    CAS  PubMed  Google Scholar 

  283. Kato K, Orii H, Watanabe K, Agata K (2001) Dorsal and ventral positional cues required for the onset of planarian regeneration may reside in differentiated cells. Dev Biol 233:109–121. https://doi.org/10.1006/dbio.2001.0226

    Article  CAS  PubMed  Google Scholar 

  284. Petersen CP, Reddien PW (2009) Wnt signaling and the polarity of the primary body axis. Cell 139:1056–1068. https://doi.org/10.1016/j.cell.2009.11.035

    Article  CAS  PubMed  Google Scholar 

  285. Schneider SQ, Bowerman B (2007) Beta-catenin asymmetries after all animal/vegetal- oriented cell divisions in Platynereis Dumerilii embryos mediate binary cell-fate specification. Dev Cell 13:73–86. https://doi.org/10.1016/j.devcel.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  286. DiNardo S, Heemskerk J, Dougan S, O'Farrell PH (1994) The making of a maggot: patterning the drosophila embryonic epidermis. Curr Opin Genet Dev 4:529–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Niehrs C (2004) Regionally specific induction by the Spemann-Mangold organizer. Nat Rev Genet 5:425–434. https://doi.org/10.1038/nrg1347

    Article  CAS  PubMed  Google Scholar 

  288. Finnerty JR, Pang K, Burton P, Paulson D, Martindale MQ (2004) Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science 304:1335–1337. https://doi.org/10.1126/science.1091946

    Article  CAS  PubMed  Google Scholar 

  289. Matus DQ, Pang K, Marlow H, Dunn CW, Thomsen GH, Martindale MQ (2006) Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci U S A 103:11195–11200. https://doi.org/10.1073/pnas.0601257103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Ibañes M, Izpisúa Belmonte JC (2008) Theoretical and experimental approaches to understand morphogen gradients. Mol Syst Biol 4:176. https://doi.org/10.1038/msb.2008.14

    Article  PubMed  PubMed Central  Google Scholar 

  291. Turing AM (1952) The chemical basis of morphogenesis. 1953. Philos Trans R Soc Lond Ser B Biol Sci 237:37–72

    Article  Google Scholar 

  292. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    Article  CAS  PubMed  Google Scholar 

  293. Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329:1616–1620. https://doi.org/10.1126/science.1179047

    Article  CAS  PubMed  Google Scholar 

  294. Werner S, Stückemann T, Beirán Amigo M, Rink JC, Jülicher F, Friedrich BM (2015) Scaling and regeneration of self-organized patterns. Phys Rev Lett 114:138101

    Article  PubMed  Google Scholar 

  295. Schüpbach T (2009) Developmental biology: Pipe’s smoking guns. Curr Biol 19:R548–R550. https://doi.org/10.1016/j.cub.2009.05.053

    Article  CAS  PubMed  Google Scholar 

  296. Eldar A, Dorfman R, Weiss D, Ashe H, Shilo B-Z, Barkai N (2002) Robustness of the BMP morphogen gradient in drosophila embryonic patterning. Nature 419:304–308. https://doi.org/10.1038/nature01061

    Article  CAS  PubMed  Google Scholar 

  297. Reversade B, De Robertis EM (2005) Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123:1147–1160. https://doi.org/10.1016/j.cell.2005.08.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Tada M, Heisenberg C-P (2012) Convergent extension: using collective cell migration and cell intercalation to shape embryos. Development 139:3897–3904. https://doi.org/10.1242/dev.073007

    Article  CAS  PubMed  Google Scholar 

  299. Bardin AJ, Schweisguth F (2006) Bearded family members inhibit Neuralized-mediated endocytosis and signaling activity of Delta in drosophila. Dev Cell 10:245–255. https://doi.org/10.1016/j.devcel.2005.12.017

    Article  CAS  PubMed  Google Scholar 

  300. De Renzis S, Yu J, Zinzen R, Wieschaus E (2006) Dorsal-ventral pattern of Delta trafficking is established by a snail-tom-Neuralized pathway. Dev Cell 10:257–264. https://doi.org/10.1016/j.devcel.2006.01.011

    Article  CAS  PubMed  Google Scholar 

  301. Martinez Arias A (2003) Wnts as morphogens? The view from the wing of drosophila. Nat Rev Mol Cell Biol 4:321–325. https://doi.org/10.1038/nrm1078

    Article  CAS  PubMed  Google Scholar 

  302. Briscoe J, Small S (2015) Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142:3996–4009. https://doi.org/10.1242/dev.129452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Orii H, Kato K, Umesono Y, Sakurai T, Agata K, Watanabe K (1999) The planarian HOM/HOX homeobox genes (Plox) expressed along the anteroposterior axis. Dev Biol 210:456–468. https://doi.org/10.1006/dbio.1999.9275

    Article  CAS  PubMed  Google Scholar 

  304. Mallo M, Wellik DM, Deschamps J (2010) Hox genes and regional patterning of the vertebrate body plan. Dev Biol 344:7–15. https://doi.org/10.1016/j.ydbio.2010.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Montavon T, Duboule D (2013) Chromatin organization and global regulation of Hox gene clusters. Philos Trans R Soc Lond Ser B Biol Sci 368:20120367. https://doi.org/10.1098/rstb.2012.0367

    Article  CAS  Google Scholar 

  306. Duboule D (2007) The rise and fall of Hox gene clusters. Development 134:2549–2560. https://doi.org/10.1242/dev.001065

    Article  CAS  PubMed  Google Scholar 

  307. Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P et al (2000) WNT signalling molecules act in axis formation in the diploblastic metazoan hydra. Nature 407:186–189. https://doi.org/10.1038/35025063

    Article  CAS  PubMed  Google Scholar 

  308. Guder C, Philipp I, Lengfeld T, Watanabe H, Hobmayer B, Holstein TW (2006) The Wnt code: cnidarians signal the way. Oncogene 25:7450–7460. https://doi.org/10.1038/sj.onc.1210052

    Article  CAS  PubMed  Google Scholar 

  309. Lee PN, Pang K, Matus DQ, Martindale MQ (2006) A WNT of things to come: evolution of Wnt signaling and polarity in cnidarians. Semin Cell Dev Biol 17:157–167. https://doi.org/10.1016/j.semcdb.2006.05.002

    Article  CAS  PubMed  Google Scholar 

  310. Ryan JF, Baxevanis AD (2007) Hox, Wnt, and the evolution of the primary body axis: insights from the early-divergent phyla. Biol Direct 2:37. https://doi.org/10.1186/1745-6150-2-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Alexander T, Nolte C, Krumlauf R (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456. https://doi.org/10.1146/annurev.cellbio.042308.113423

    Article  CAS  PubMed  Google Scholar 

  312. Galliot B (2012) Hydra, a fruitful model system for 270 years. Int J Dev Biol 56:411–423. https://doi.org/10.1387/ijdb.120086bg

    Article  CAS  PubMed  Google Scholar 

  313. Jeffery WR (2015) Closing the wounds: one hundred and twenty five years of regenerative biology in the ascidian Ciona intestinalis. Genesis 53:48–65. https://doi.org/10.1002/dvg.22799

    Article  PubMed  Google Scholar 

  314. Gemberling M, Bailey TJ, Hyde DR, Poss KD (2013) The zebrafish as a model for complex tissue regeneration. Trends Genet 29:611–620. https://doi.org/10.1016/j.tig.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  315. Brockes J, Kumar A (2005) Newts. Curr Biol 15:R42–R44. https://doi.org/10.1016/j.cub.2004.12.049

    Article  CAS  PubMed  Google Scholar 

  316. Simon A, Tanaka EM (2013) Limb regeneration. Wiley Interdiscip Rev Dev Biol 2:291–300. https://doi.org/10.1002/wdev.73

    Article  PubMed  Google Scholar 

  317. Sánchez Alvarado A (2000) Regeneration in the metazoans: why does it happen? BioEssays 22:578–590. https://doi.org/10.1002/(SICI)1521-1878(200006)22:6<578::AID-BIES11>3.0.CO;2-#

    Article  PubMed  Google Scholar 

  318. Morgan TH (1904) The control of heteromorphosis in Planaria Maculata. Archiv Für Entwicklungsmechanik Der Organismen 17:683–695. https://doi.org/10.1007/BF02161815

    Article  Google Scholar 

  319. French V (1980) Positional information around the segments of the cockroach leg. J Embryol Exp Morphol 59:281–313

    CAS  PubMed  Google Scholar 

  320. Nakamura T, Mito T, Bando T, Ohuchi H, Noji S (2008) Dissecting insect leg regeneration through RNA interference. Cell Mol Life Sci 65:64–72. https://doi.org/10.1007/s00018-007-7432-0

    Article  CAS  PubMed  Google Scholar 

  321. Maden M (1977) The regeneration of positional information in the amphibian limb. J Theor Biol 69:735–753

    Article  CAS  PubMed  Google Scholar 

  322. Meinhardt H (1983) A boundary model for pattern formation in vertebrate limbs. J Embryol Exp Morphol 76:115–137

    CAS  PubMed  Google Scholar 

  323. Ephrussi A, Dickinson LK, Lehmann R (1991) Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66:37–50

    Article  CAS  PubMed  Google Scholar 

  324. Galliot B (2013) Regeneration in Hydra. John Wiley & Sons, Ltd, Hoboken, New Jersey. https://doi.org/10.1002/9780470015902.a0001096.pub3

    Book  Google Scholar 

  325. DUBOIS F (1948) Sur Une Nouvelle Methode Permettant De Mettre en Evidence La Migration Des Cellules De Regeneration Chez Les Planaires. C R Soc Biol 142:699–700

    Google Scholar 

  326. Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21:172–185. https://doi.org/10.1016/j.devcel.2011.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Morgan TH (1900) Regeneration in planarians. Archiv Für Entwicklungsmechanik Der Organismen 10:58–119. https://doi.org/10.1007/BF02156347

    Article  Google Scholar 

  328. Morgan TH (1901) Regeneration. Macmillan, New York

    Book  Google Scholar 

  329. Morgan TH (1904) Polarity and axial heteromorphosis. Am Nat 38:502–505

    Google Scholar 

  330. Campbell LJ, Crews CM (2008) Wound epidermis formation and function in urodele amphibian limb regeneration. Cell Mol Life Sci 65:73–79. https://doi.org/10.1007/s00018-007-7433-z

    Article  CAS  PubMed  Google Scholar 

  331. Schürmann W, Peter R (1998) Inhibition of regeneration in the planarian Dugesia polychroa (Schmidt) by treatment with magnesium chloride: a morphological study of wound closure. Hydrobiologia 383:111–116. https://doi.org/10.1023/A:1003475324285

    Article  Google Scholar 

  332. Wenemoser D, Lapan SW, Wilkinson AW, Bell GW, Reddien PW (2012) A molecular wound response program associated with regeneration initiation in planarians. Genes Dev 26:988–1002. https://doi.org/10.1101/gad.187377.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Wolff E, Dubois F (1948) Sur la migration des cellules de regeneration chez les planaires. Rev Suisse Zool 55:218–227

    Article  Google Scholar 

  334. Guedelhoefer OC, Sánchez Alvarado A (2012) Amputation induces stem cell mobilization to sites of injury during planarian regeneration. Development 139:3510–3520. https://doi.org/10.1242/dev.082099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JC et al (1999) The transcriptional program in the response of human fibroblasts to serum. Science 283:83–87

    Article  CAS  PubMed  Google Scholar 

  336. Scimone ML, Kravarik KM, Lapan SW, Reddien PW (2014) Neoblast specialization in regeneration of the planarian Schmidtea mediterranea. Stem Cell Reports 3:339–352. https://doi.org/10.1016/j.stemcr.2014.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Fraguas S, Barberán S, Iglesias M, Rodríguez-Esteban G, Cebrià F (2014) Egr-4, a target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians. Development 141:1835–1847. https://doi.org/10.1242/dev.101345

    Article  CAS  PubMed  Google Scholar 

  338. Gaviño MA, Wenemoser D, Wang IE, Reddien PW (2013) Tissue absence initiates regeneration through Follistatin-mediated inhibition of Activin signaling. elife 2:e00247. https://doi.org/10.7554/eLife.00247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Hill EM, Petersen CP (2015) Wnt/notum spatial feedback inhibition controls neoblast differentiation to regulate reversible growth of the planarian brain. Development 142:4217–4229. https://doi.org/10.1242/dev.123612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Vogg MC, Owlarn S, Pérez Rico YA, Xie J, Suzuki Y, Gentile L et al (2014) Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors. Dev Biol 390:136–148. https://doi.org/10.1016/j.ydbio.2014.03.016

    Article  CAS  PubMed  Google Scholar 

  341. Zhang X, Cheong S-M, Amado NG, Reis AH, MacDonald BT, Zebisch M et al (2015) Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. Dev Cell 32:719–730. https://doi.org/10.1016/j.devcel.2015.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Lum L, Beachy PA (2004) The hedgehog response network: sensors, switches, and routers. Science 304:1755–1759. https://doi.org/10.1126/science.1098020

    Article  CAS  PubMed  Google Scholar 

  343. Chan JD, Agbedanu PN, Zamanian M, Gruba SM, Haynes CL, Day TA et al (2014) “Death and axes”: unexpected Ca2+ entry phenologs predict new anti-schistosomal agents. PLoS Pathog 10:e1003942. https://doi.org/10.1371/journal.ppat.1003942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Beane WS, Morokuma J, Adams DS, Levin M (2011) A chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration. Chem Biol 18:77–89. https://doi.org/10.1016/j.chembiol.2010.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. MARSH G, BEAMS HW (1952) Electrical control of morphogenesis in regenerating Dugesia tigrina. I. Relation of axial polarity to field strength. J Cell Comp Physiol 39:191–213

    Article  CAS  PubMed  Google Scholar 

  346. DIMMITT J, MARSH G (1952) Electrical control of morphogenesis in regenerating Dugesia tigrina. II. Potential gradient vs. current density as control factors. J Cell Comp Physiol 40:11–23

    Article  CAS  PubMed  Google Scholar 

  347. Lange CS, Steele VE (1978) The mechanism of anterior-posterior polarity control in planarians. Differentiation 11:1–12

    Article  CAS  PubMed  Google Scholar 

  348. Oviedo NJ, Nicolas CL, Adams DS, Levin M (2008) Live imaging of planarian membrane potential using DiBAC4(3). CSH Protoc 2008:pdb.prot5055

    PubMed  Google Scholar 

  349. Morgan TH (1904) Notes on regeneration. Biol Bull 6:159–172

    Article  Google Scholar 

  350. Child CM (1941) Patterns and problems of development. The University of Chicago Press, Chicago

    Book  Google Scholar 

  351. Brøndsted HV (1969) Planarian regeneration. Pergamon Press, Oxford, New York

    Book  Google Scholar 

  352. Sikes JM, Newmark PA (2013) Restoration of anterior regeneration in a planarian with limited regenerative ability. Nature 500:77–80. https://doi.org/10.1038/nature12403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Evans DJ, Owlarn S, Tejada Romero B, Chen C, Aboobaker AA (2011) Combining classical and molecular approaches elaborates on the complexity of mechanisms underpinning anterior regeneration. PLoS One 6:e27927. https://doi.org/10.1371/journal.pone.0027927.g007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Felix DA, Aboobaker AA (2010) The TALE class homeobox gene smed-prep defines the anterior compartment for head regeneration. PLoS Genet 6:e1000915. https://doi.org/10.1371/journal.pgen.1000915.t001

    Article  PubMed  PubMed Central  Google Scholar 

  355. Scimone ML, Lapan SW, Reddien PW (2014) A forkhead transcription factor is wound-induced at the planarian midline and required for anterior pole regeneration. PLoS Genet 10:e1003999. https://doi.org/10.1371/journal.pgen.1003999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Kicheva A, Gonzalez-Gaitan M (2008) The decapentaplegic morphogen gradient: a precise definition. Curr Opin Cell Biol 20:137–143. https://doi.org/10.1016/j.ceb.2008.01.008

    Article  CAS  PubMed  Google Scholar 

  357. Briscoe J, Lawrence PA, Vincent J-P (2010) Generation and interpretation of morphogen gradients. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  358. Tejada Romero B, Carter J-M, Mihaylova Y, Neumann B, Aboobaker AA (2015) JNK signalling is necessary for a Wnt- and stem cell-dependent regeneration programme. Development 142:2413–2424. https://doi.org/10.1242/dev.115139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Currie KW, Pearson BJ (2013) Transcription factors lhx1/5-1 and pitx are required for the maintenance and regeneration of serotonergic neurons in planarians. Development 140:3577–3588. https://doi.org/10.1242/dev.098590

    Article  CAS  PubMed  Google Scholar 

  360. März M, Seebeck F, Bartscherer K (2013) A Pitx transcription factor controls the establishment and maintenance of the serotonergic lineage in planarians. Development 140:4499–4509. https://doi.org/10.1242/dev.100081

    Article  CAS  PubMed  Google Scholar 

  361. Wang W, Tindell N, Yan S, Yoder JH (2013) Homeotic functions of the Teashirt transcription factor during adult drosophila development. Biol Open 2:18–29. https://doi.org/10.1242/bio.20122915

    Article  CAS  PubMed  Google Scholar 

  362. Gallet A, Angelats C, Erkner A, Charroux B, Fasano L, Kerridge S (1999) The C-terminal domain of armadillo binds to hypophosphorylated teashirt to modulate wingless signalling in drosophila. EMBO J 18:2208–2217. https://doi.org/10.1093/emboj/18.8.2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Longobardi E, Penkov D, Mateos D, De Florian G, Torres M, Blasi F (2014) Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates. Dev Dyn 243:59–75. https://doi.org/10.1002/dvdy.24016

    Article  CAS  PubMed  Google Scholar 

  364. Bonar NA, Petersen CP (2017) Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration. Development 144:784–794. https://doi.org/10.1242/dev.139964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Seebeck F, März M, Meyer A-W, Reuter H, Vogg MC, Stehling M et al (2017) Integrins are required for tissue organization and restriction of neurogenesis in regenerating planarians. Development 144:795–807. https://doi.org/10.1242/dev.139774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  367. Tepass U, Truong K, Godt D, Ikura M, Peifer M (2000) Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol 1:91–100. https://doi.org/10.1038/35040042

    Article  CAS  PubMed  Google Scholar 

  368. Collins JJ, Hou X, Romanova EV, Lambrus BG, Miller CM, Saberi A et al (2010) Genome-wide analyses reveal a role for peptide hormones in planarian germline development. PLoS Biol 8:e1000509. https://doi.org/10.1371/journal.pbio.1000509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125. https://doi.org/10.1126/science.1247125

    Article  CAS  PubMed  Google Scholar 

  370. Sengel C (1960) Culture in vitro de blastemes de regeneration de Planaires. J Embryol Exp Morphol 8:468–476

    CAS  PubMed  Google Scholar 

  371. Schwank G, Basler K (2010) Regulation of organ growth by morphogen gradients. Cold Spring Harb Perspect Biol 2:a001669. https://doi.org/10.1101/cshperspect.a001669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Petridou NI, Spiró Z, Heisenberg C-P (2017) Multiscale force sensing in development. Nat Cell Biol 19:581–588. https://doi.org/10.1038/ncb3524

    Article  CAS  PubMed  Google Scholar 

  373. Hervieux N, Dumond M, Sapala A, Routier-Kierzkowska A-L, Kierzkowski D, Roeder AHK et al (2016) A mechanical feedback restricts sepal growth and shape in arabidopsis. Curr Biol 26:1019–1028. https://doi.org/10.1016/j.cub.2016.03.004

    Article  CAS  Google Scholar 

  374. Kawakatsu M, Makino N, Shirasawa Y (1982) Bipalium Nobile Sp. Nov. (Turbellaria, Tricladida, Terricola), a new land planarian from Tokyo. Annot Zool Jpn 55:236–262

    Google Scholar 

  375. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56. https://doi.org/10.1038/nature09941

    Article  CAS  PubMed  Google Scholar 

  376. Meinhardt A, Eberle D, Tazaki A, Ranga A, Niesche M, Wilsch-Bräuninger M et al (2014) 3D reconstitution of the patterned neural tube from embryonic stem cells. Stem Cell Reports 3:987–999. https://doi.org/10.1016/j.stemcr.2014.09.020

    Article  PubMed  PubMed Central  Google Scholar 

  377. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379. https://doi.org/10.1038/nature12517

    Article  CAS  PubMed  Google Scholar 

  378. Turner DA, Girgin M, Alonso-Crisostomo L, Trivedi V, Baillie-Johnson P, Glodowski CR et al (2017) Anteroposterior polarity and elongation in the absence of extraembryonic tissues and spatially localised signalling in Gastruloids, mammalian embryonic organoids. Development 144(21):3894–3906. https://doi.org/10.1242/dev.150391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Rink JC (2013) Stem cell systems and regeneration in planaria. Dev Genes Evol. 223(1-2):67-84. https://doi.org/10.1007/s00427-012-0426-4. Epub 2012 Nov 9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank the members of the Rink lab for lively discussions and colleagues at the MPI-CBG and in the planarian community for helpful comments. I apologize to all authors whose work I have not cited in the interest of maintaining the flow of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen C. Rink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rink, J.C. (2018). Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale. In: Rink, J. (eds) Planarian Regeneration. Methods in Molecular Biology, vol 1774. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7802-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7802-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7800-7

  • Online ISBN: 978-1-4939-7802-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics