Skip to main content

Induction and Assessment of Hypoxia in Glioblastoma Cells In Vitro

  • Protocol
  • First Online:
Glioblastoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1741))

Abstract

To simulate and study the hypoxic microenvironment associated with intracerebral glioma in vivo, simple and reproducible methods are described and discussed for inducing hypoxia or chemical pseudohypoxia in glioma cell cultures and assessing their effects on the expression and nuclear translocation of hypoxia-inducible factor (HIF)-1α, a key transcriptional factor of oxygen homeostasis, by Western blot analysis and immunocytochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKeown SR (2014) Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br J Radiol 87(1035):20130676. https://doi.org/10.1259/bjr.20130676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lechpammer M, Tran YP, Wintermark P, Martinez-Cerdeno V, Krishnan VV, Ahmed W, Berman RF, Jensen FE, Nudler E, Zagzag D (2017) Upregulation of cystathione beta-synthase and p70S6K/S6 in neonatal hypoxic ischemic brain injury. Brain Pathol 27(4):449–458. https://doi.org/10.1111/bpa.12421

    Article  CAS  PubMed  Google Scholar 

  3. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4):266–276. https://doi.org/10.1093/jnci/93.4.266

  4. Vartanian A, Singh SK, Agnihotri S, Jalali S, Burrell K, Aldape KD, Zadeh G (2014) GBM’s multifaceted landscape: highlighting regional and microenvironmental heterogeneity. Neuro-Oncology 16(9):1167–1175. https://doi.org/10.1093/neuonc/nou035

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gagner JP, Golfinos JG, Graber JJ, Zagzag D (2011) Molecular basis of glioma neovascularization and its therapeutic applications. In: Mehta M, Chang SM, Newton H, Guha A, Vogelbaum M (eds) Principles and practice of neuro-oncology: a multidisciplinary approach. Demos Medical Publishing, New York, NY, pp 122–144. i005–i007

    Google Scholar 

  6. Dings J, Meixensberger J, Jager A, Roosen K (1998) Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery 43(5):1082–1095

    Article  CAS  PubMed  Google Scholar 

  7. Evans SM, Judy KD, Dunphy I, Jenkins WT, Nelson PT, Collins R, Wileyto EP, Jenkins K, Hahn SM, Stevens CW, Judkins AR, Phillips P, Geoerger B, Koch CJ (2004) Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. Cancer Res 64(5):1886–1892. https://doi.org/10.1158/0008-5472.CAN-03-2424

  8. Lally BE, Rockwell S, Fischer DB, Collingridge DR, Piepmeier JM, Knisely JP (2006) The interactions of polarographic measurements of oxygen tension and histological grade in human glioma. Cancer J (Sudbury, MA) 12(6):461–466

    Article  Google Scholar 

  9. Koh MY, Powis G (2012) Passing the baton: the HIF switch. Trends Biochem Sci 37(9):364–372. https://doi.org/10.1016/j.tibs.2012.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kondo K, Kim WY, Lechpammer M, Kaelin WG Jr (2003) Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 1(3):E83. https://doi.org/10.1371/journal.pbio.0000083

    Article  PubMed  PubMed Central  Google Scholar 

  11. Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123(9):3664–3671. https://doi.org/10.1172/jci67230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koivunen P, Hirsila M, Kivirikko KI, Myllyharju J (2006) The length of peptide substrates has a marked effect on hydroxylation by the hypoxia-inducible factor prolyl 4-hydroxylases. J Biol Chem 281(39):28712–28720. https://doi.org/10.1074/jbc.M604628200

    Article  CAS  PubMed  Google Scholar 

  13. Fong GH, Takeda K (2008) Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ 15(4):635–641. https://doi.org/10.1038/cdd.2008.10

    Article  CAS  PubMed  Google Scholar 

  14. Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL (2000) Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88(11):2606–2618. https://doi.org/10.1002/1097- 0142(20000601)88:11<2606::AID-CNCR25>3.0.CO;2-W

    Google Scholar 

  15. Strickland M, Stoll EA (2017) Metabolic reprogramming in glioma. Front Cell Dev Biol 5:43. https://doi.org/10.3389/fcell.2017.00043

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nakazawa MS, Keith B, Simon MC (2016) Oxygen availability and metabolic adaptations. Nat Rev Cancer 16(10):663–673. https://doi.org/10.1038/nrc.2016.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Salnikow K, Donald SP, Bruick RK, Zhitkovich A, Phang JM, Kasprzak KS (2004) Depletion of intracellular ascorbate by the carcinogenic metals nickel and cobalt results in the induction of hypoxic stress. J Biol Chem 279(39):40337–40344. https://doi.org/10.1074/jbc.M403057200

    Article  CAS  PubMed  Google Scholar 

  18. Wang GL, Semenza GL (1993) Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82(12):3610–3615

    CAS  PubMed  Google Scholar 

  19. Yuan Y, Hilliard G, Ferguson T, Millhorn DE (2003) Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem 278(18):15911–15916. https://doi.org/10.1074/jbc.M300463200

    Article  CAS  PubMed  Google Scholar 

  20. Wu D, Yotnda P (2011) Induction and testing of hypoxia in cell culture. J Vis Exp 54. https://doi.org/10.3791/2899

  21. Byrne MB, Leslie MT, Gaskins HR, Kenis PJ (2014) Methods to study the tumor microenvironment under controlled oxygen conditions. Trends Biotechnol 32(11):556–563. https://doi.org/10.1016/j.tibtech.2014.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zagzag D, Lukyanov Y, Lan L, Ali MA, Esencay M, Mendez O, Yee H, Voura EB, Newcomb EW (2006) Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest 86(12):1221–1232. https://doi.org/10.1038/labinvest.3700482

    Article  CAS  PubMed  Google Scholar 

  23. Zagzag D, Esencay M, Mendez O, Yee H, Smirnova I, Huang Y, Chiriboga L, Lukyanov E, Liu M, Newcomb EW (2008) Hypoxia- and vascular endothelial growth factor-induced stromal cell-derived factor-1alpha/CXCR4 expression in glioblastomas: one plausible explanation of Scherer's structures. Am J Pathol 173(2):545–560. https://doi.org/10.2353/ajpath.2008.071197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zagzag D, Nomura M, Friedlander DR, Blanco CY, Gagner JP, Nomura N, Newcomb EW (2003) Geldanamycin inhibits migration of glioma cells in vitro: a potential role for hypoxia-inducible factor (HIF-1alpha) in glioma cell invasion. J Cell Physiol 196(2):394–402. https://doi.org/10.1002/jcp.10306

    Article  CAS  PubMed  Google Scholar 

  25. Moroz E, Carlin S, Dyomina K, Burke S, Thaler HT, Blasberg R, Serganova I (2009) Real-time imaging of HIF-1alpha stabilization and degradation. PLoS One 4(4):e5077. https://doi.org/10.1371/journal.pone.0005077

    Article  PubMed  PubMed Central  Google Scholar 

  26. Allen M, Bjerke M, Edlund H, Nelander S, Westermark B (2016) Origin of the U87MG glioma cell line: good news and bad news. Sci Transl Med 8(354):354re353. https://doi.org/10.1126/scitranslmed.aaf6853

    Article  Google Scholar 

  27. Timerman D, Yeung CM (2014) Identity confusion of glioma cell lines. Gene 536(1):221–222. https://doi.org/10.1016/j.gene.2013.11.096

    Article  CAS  PubMed  Google Scholar 

  28. Stepanenko AA, Kavsan VM (2014) Karyotypically distinct U251, U373, and SNB19 glioma cell lines are of the same origin but have different drug treatment sensitivities. Gene 540(2):263–265. https://doi.org/10.1016/j.gene.2014.02.053

    Article  CAS  PubMed  Google Scholar 

  29. ATCC (2017) Misidentified cell lines. https://www.atcc.org/Products/Cells_and_Microorganisms/Cell_Lines/Misidentified_Cell_Lines.aspx. Accessed 29 Aug 2017

  30. Rosenberg S, Verreault M, Schmitt C, Guegan J, Guehennec J, Levasseur C, Marie Y, Bielle F, Mokhtari K, Hoang-Xuan K, Ligon K, Sanson M, Delattre JY, Idbaih A (2017) Multi-omics analysis of primary glioblastoma cell lines shows recapitulation of pivotal molecular features of parental tumors. Neuro-Oncology 19(2):219–228. https://doi.org/10.1093/neuonc/now160

    PubMed  Google Scholar 

  31. Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, Bayani J, Head R, Lee M, Bernstein M, Squire JA, Smith A, Dirks P (2009) Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell 4(6):568–580. https://doi.org/10.1016/j.stem.2009.03.014

    Article  CAS  PubMed  Google Scholar 

  32. Mathupala SP, Kiousis S, Szerlip NJ (2016) A lab assembled microcontroller-based sensor module for continuous oxygen measurement in portable hypoxia chambers. PLoS One 11(2):e0148923. https://doi.org/10.1371/journal.pone.0148923

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang R, Jin F, Zhong H (2014) A novel experimental hypoxia chamber for cell culture. Am J Cancer Res 4(1):53–60

    PubMed  PubMed Central  Google Scholar 

  34. Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C (2011) Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15(6):1239–1253. https://doi.org/10.1111/j.1582-4934.2011.01258.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dimova EY, Kietzmann T (2010) Hypoxia-inducible factors: post-translational crosstalk of signaling pathways. Methods Mol Biol (Clifton, NJ) 647:215–236. https://doi.org/10.1007/978-1-60761-738-9_13

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH/NINDS grant R21-NS074055 (D.Z.). We gratefully acknowledge Dr. Mine Esencay for performing the glioma cell immunofluorescence experiment and Scott Kamen for assisting with the manuscript editing and figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Zagzag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gagner, JP., Lechpammer, M., Zagzag, D. (2018). Induction and Assessment of Hypoxia in Glioblastoma Cells In Vitro. In: Placantonakis, D. (eds) Glioblastoma. Methods in Molecular Biology, vol 1741. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7659-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7659-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7658-4

  • Online ISBN: 978-1-4939-7659-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics