Skip to main content

Laser Capture Microdissection: Insights into Methods and Applications

  • Protocol
  • First Online:
Laser Capture Microdissection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1723))

Abstract

Laser capture microdissection is a non-molecular, minimally disruptive method to obtain cytologically and/or phenotypically defined cells or groups of cells from heterogeneous tissues. Its advantages include efficient rapid and precise procurement of cells. The potential disadvantages include time consuming, expensive, and limited by the need for a pathologist for recognition of distinct subpopulations within a specified sample. Overall it is versatile allowing the preparation of homogenous isolates of specific subpopulations of cells from which DNA/RNA or protein can be extracted for RT-PCR, quantitative PCR, next-generation sequencing, immunoblot blot analyses, and mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fend F, Raffeld M (2000) Laser capture microdissection in pathology. J Clin Pathol 53:666–672

    Article  CAS  Google Scholar 

  2. Espina V, Heiby M, Pierobon M et al (2007) Laser capture microdissection technology. Expert Rev Mol Diagn 7:647–657

    Article  CAS  Google Scholar 

  3. Burgemeister R (2005) New aspects of laser capture microdissection in research and routine. J Histochem Cytochem 53:409–412

    Article  CAS  Google Scholar 

  4. Agar NS, Halliday GM, Barnetson RS et al (2003) A novel technique for the examination of skin biopsies by laser capture microdissection. J Cutan Pathol 30:265–270

    Article  CAS  Google Scholar 

  5. Yazdi AS, Puchta U, Flaig MJ et al (2004) Laser-capture microdissection: applications in routine molecular dermatopathology. J Cutan Pathol 31:465–470

    Article  Google Scholar 

  6. Esposito G (2007) Complementary techniques: laser capture microdissection—increasing specificity of gene expression profiling of cancer specimens. Adv Exp Med Biol 593:54–65

    Article  Google Scholar 

  7. Eltoum IA, Siegal GP, Frost AR (2002) Microdissection of histologic sections: past, present, and future. Adv Anat Pathol 9:316–322

    Article  Google Scholar 

  8. Shibata D (1993) Selective ultraviolet radiation fractionation and polymerase chain reaction analysis of genetic alterations. Am J Pathol 143:1523–1526

    CAS  Google Scholar 

  9. Murray GI (2007) An overview of laser capture microdissection technologies. Acta Histochem 109:171–176

    Article  Google Scholar 

  10. Veritas Microdissection System. MDS Analytical Technologies. http://www.moleculardevices.com/pages/instruments/veritas.html. Accessed 11 Jul 2008

  11. Espina V, Wulfkuhle JD, Calvert VS et al (2006) Laser-capture microdissection. Nat Protoc 1:586–603

    Article  CAS  Google Scholar 

  12. Ahram M, Flaig MJ, Gillespie JW et al (2003) Evaluation of ethanol-fixed, paraffin-embedded tissues for proteomic applications. Proteomics 3:413–421

    Article  CAS  Google Scholar 

  13. Bostwick DG, al Annouf N, Choi C (1994) Establishment of the formalin-free surgical pathology laboratory. Utility of an alcohol-based fixative. Arch Pathol Lab Med 118:298–302

    CAS  Google Scholar 

  14. Gianni L, Zambetti M, Clark K et al (2005) Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 23:7265–7277

    Article  CAS  Google Scholar 

  15. Schutze K, Lahr G (1998) Identification of expressed genes by laser-mediated manipulation of single cells. Nat Biotechnol 16:737–742

    Article  CAS  Google Scholar 

  16. Bonner RF, Emmert-Buck M, Cole K et al (1997) Laser capture microdissection: molecular analysis of tissue. Science 278:1481–1483

    Article  CAS  Google Scholar 

  17. Simone NL, Bonner RF, Gillespie JW et al (1998) Laser-capture microdissection: opening the microscopic frontier to molecular analysis. Trends Genet 14:272–276

    Article  CAS  Google Scholar 

  18. Brignole E (2000) Laser-capture microdissection: isolating individual cells for molecular analysis. Mod Drug Discov 3:69–70

    Google Scholar 

  19. Gruber HE, Mougeot JL, Hoelscher G et al (2007) Microarray analysis of laser capture microdissected-anulus cells from the human intervertebral disc. Spine 32:1181–1187

    Article  Google Scholar 

  20. Benayahu D, Socher R, Shur I (2008) Application of the laser capture microdissection technique for molecular definition of skeletal cell differentiation in vivo. Methods Mol Biol 455:191–201

    Article  CAS  Google Scholar 

  21. Sluka P, O’Donnell L, McLachlan RI et al (2008) Application of laser-capture microdissection to analysis of gene expression in the testis. Prog Histochem Cytochem 43:173–201

    Article  Google Scholar 

  22. Shukla CJ, Pennington CJ, Riddick AC et al (2008) Laser-capture microdissection in prostate cancer research: establishment and validation of a powerful tool for the assessment of tumour-stroma interactions. Br J Urol Int 101:765–774

    Article  Google Scholar 

  23. Harrell JC, Dye WW, Harvell DM et al (2008) Contaminating cells alter gene signatures in whole organ versus laser capture microdissected tumors; a comparison of experimental breast cancers and their lymph node metastases. Clin Exp Metastasis 25:81–88

    Article  Google Scholar 

  24. Domazet B, MacLennan G, Lopez-Beltran A et al (2008) Laser capture microdissection in the genomic and proteomic era: targeting the genetic basis of cancer. Int J Clin Exp Pathol 1:475–488

    CAS  Google Scholar 

  25. Ladanyi A, Sipos F, Szoke D et al (2006) Laser microdissection in translational and clinical research. Cytometry A 69A:947–960

    Article  CAS  Google Scholar 

  26. Datta S, Malhotra L, Dickerson R et al (2015) Laser capture microdissection: big data from small samples. Histol Histopathol 30:1255–1269

    CAS  Google Scholar 

  27. Johann DJ, Rodriguez-Canales J, Mukherjee S et al (2009) Approaching solid tumor heterogeneity on a cellular basis by tissue proteomics using laser capture microdissection and biological mass spectrometry. J Proteome Res 8:2310–2318

    Article  CAS  Google Scholar 

  28. Domazet B, Maclennan GT, Lopez-Beltran A et al (2008) Laser capture microdissection in the genomic and proteomic era: targeting the genetic basis of cancer. Int J Clin Exp Pathol 15:475–488

    Google Scholar 

  29. Simone NL, Paweletz CP, Charboneau L et al (2000) Laser capture microdissection: beyond functional genomics to proteomics. Mol Diagn 2000(5):301–307

    Google Scholar 

  30. Roy S, Patel D, Khanna S et al (2007) Transcriptome-wide analysis of blood vessels laser captured from human skin and chronic wound-edge tissue. Proc Natl Acad Sci U S A 104:14472–14477

    Article  CAS  Google Scholar 

  31. Luo L, Salunga RC, Guo H et al (1999) Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med 5:117–122

    Article  CAS  Google Scholar 

  32. Bergman R (2008) Dermatopathology and molecular genetics. J Am Acad Dermatol 58:452–457

    Article  Google Scholar 

  33. What is a Dermatopathologist? The American Society of Dermatopathology. http://www.asdp.org/about/dermatopathologist.cfm. Accessed 1 Mar 2009

  34. Boni R, Zhuang Z, Albuquerque A et al (1998) Loss of heterozygosity detected on 1p and 9q in microdissected atypical nevi. Arch Dermatol 134:882–883

    Article  CAS  Google Scholar 

  35. Maitra A, Gasdar AF, Moore TO et al (2002) Loss of heterozygosity analysis of cutaneous melanoma and benign melanocytic nevi: laser capture microdissection demonstrates clonal genetic changes in acquired nevocellular nevi. Hum Pathol 33:191–197

    Article  CAS  Google Scholar 

  36. Hussein MR (2004) Genetic pathways to melanoma tumorigenesis. J Clin Pathol 57:797–801

    Article  CAS  Google Scholar 

  37. Dadzie OE, Yang S, Emley A et al (2009) RAS and RAF mutations in banal melanocytic aggregates contiguous with primary cutaneous melanoma: clues to melanomagenesis. Br J Dermatol 160:368–375

    Article  CAS  Google Scholar 

  38. Woody GS (2001) Analysis of clonality in cutaneous T cell lymphoma and associated diseases. Ann N Y Acad Sci 941:26–30

    Article  Google Scholar 

  39. Gallardo F, Pujol RM, Bellosillo D et al (2006) Primary cutaneous B-cell lymphoma (marginal zone) with prominent T-cell component and aberrant dual (T and B) genotype; diagnostic usefulness of laser-capture microdissection. Br J Dermatol 154:162–166

    Article  CAS  Google Scholar 

  40. Zhu G, Xiao H, Mohan VP et al (2003) Gene expression in the tuberculous granuloma: analysis by laser capture microdissection and real-time PCR. Cell Microbiol 5:445–453

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meera Mahalingam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mahalingam, M. (2018). Laser Capture Microdissection: Insights into Methods and Applications. In: Murray, G. (eds) Laser Capture Microdissection. Methods in Molecular Biology, vol 1723. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7558-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7558-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7557-0

  • Online ISBN: 978-1-4939-7558-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics