Skip to main content

Gonadotropin and Steroid Hormone Control of Spermatogonial Differentiation

  • Chapter
  • First Online:
The Biology of Mammalian Spermatogonia

Abstract

Spermatogenesis, the process essential for male fertility, relies on the continuous supply of differentiating germ cells from a pool of spermatogonial stem cells. Spermatogenesis is dependent upon hormonal stimuli that result in a complex pattern of intratesticular signalling pathways. The two main hormones responsible for its control are pituitary follicle stimulating hormone (FSH) and testicular testosterone. Testosterone and FSH act through their somatic cell receptors in the testis to promote the initiation of spermatogenesis, increase in germ cell numbers, development and differentiation. This knowledge has been advanced by animal models, but these models often pose more questions than they answer. However, when all the evidence provided by these studies is taken together, some important conclusions can be drawn. Evidence from animal models confirms that testosterone is required for completion of meiosis and spermiation, and can have a stimulatory effect on spermatogonia numbers in both rodent and primate models of gonadotropin suppression, even in the absence of FSH. FSH alone cannot drive spermatogenesis to completion, but it has a stimulatory effect on both Sertoli cell number and spermatogonia number that results in a higher adult sperm output. Evidence suggests that testosterone and FSH are more important for the development of spermatogonia in primates than they are in rodents. The sum of this knowledge highlights future studies that are required to develop male contraceptives or infertility treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abel MH, Wootton AN, Wilkins V, Huhtaniemi I, Knight PG, Charlton HM (2000) The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology 141(5):1795–1803

    Article  CAS  PubMed  Google Scholar 

  • Abel MH, Baker PJ, Charlton HM, Monteiro A, Verhoeven G, De Gendt K, Guillou F, O’Shaughnessy PJ (2008) Spermatogenesis and sertoli cell activity in mice lacking sertoli cell receptors for follicle-stimulating hormone and androgen. Endocrinology 149(7):3279–3285. https://doi.org/10.1210/en.2008-0086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amador AG, Parkening TA, Beamer WG, Bartke A, Collins TJ (1986) Testicular LH receptors and circulating hormone levels in three mouse models for inherited diseases (Tfm/y, lit/lit and hyt/hyt). Endocrinol Exp 20(4):349–358

    CAS  PubMed  Google Scholar 

  • Arslan M, Weinbauer GF, Schlatt S, Shahab M, Nieschlag E (1993) FSH and testosterone, alone or in combination, initiate testicular growth and increase the number of spermatogonia and Sertoli cells in a juvenile non-human primate (Macaca mulatta). J Endocrinol 136(2):235–243

    Article  CAS  PubMed  Google Scholar 

  • August GP, Grumbach MM, Kaplan SL (1972) Hormonal changes in puberty. 3. Correlation of plasma testosterone, LH, FSH, testicular size, and bone age with male pubertal development. J Clin Endocrinol Metab 34(2):319–326. https://doi.org/10.1210/jcem-34-2-319

    Article  CAS  PubMed  Google Scholar 

  • Auharek SA, de Franca LR (2010) Postnatal testis development, Sertoli cell proliferation and number of different spermatogonial types in C57BL/6J mice made transiently hypo- and hyperthyroidic during the neonatal period. J Anat 216(5):577–588. https://doi.org/10.1111/j.1469-7580.2010.01219.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker PJ, O’Shaughnessy PJ (2001) Role of gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development in mice. Reproduction 122(2):227–234

    Article  CAS  PubMed  Google Scholar 

  • Baker PJ, Pakarinen P, Huhtaniemi IT, Abel MH, Charlton HM, Kumar TR, O’Shaughnessy PJ (2003) Failure of normal Leydig cell development in follicle-stimulating hormone (FSH) receptor-deficient mice, but not FSHbeta-deficient mice: role for constitutive FSH receptor activity. Endocrinology 144(1):138–145

    Article  CAS  PubMed  Google Scholar 

  • Barakat B, O’Connor AE, Gold E, de Kretser DM, Loveland KL (2008) Inhibin, activin, follistatin and FSH serum levels and testicular production are highly modulated during the first spermatogenic wave in mice. Reproduction 136(3):345–359. https://doi.org/10.1530/REP-08-0140

    Article  CAS  PubMed  Google Scholar 

  • Bartlett JM, Weinbauer GF, Nieschlag E (1989) Differential effects of FSH and testosterone on the maintenance of spermatogenesis in the adult hypophysectomized rat. J Endocrinol 121(1):49–58

    Article  CAS  PubMed  Google Scholar 

  • Bellve AR, Cavicchia JC, Millette CF, O’Brien DA, Bhatnagar YM, Dym M (1977) Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol 74(1):68–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berensztein EB, Sciara MI, Rivarola MA, Belgorosky A (2002) Apoptosis and proliferation of human testicular somatic and germ cells during prepuberty: high rate of testicular growth in newborns mediated by decreased apoptosis. J Clin Endocrinol Metab 87(11):5113–5118. https://doi.org/10.1210/jc.2002-020032

    Article  CAS  PubMed  Google Scholar 

  • Bhasin S, Fielder TJ, Swerdloff RS (1987) Testosterone selectively increases serum follicle-stimulating hormonal (FSH) but not luteinizing hormone (LH) in gonadotropin-releasing hormone antagonist-treated male rats: evidence for differential regulation of LH and FSH secretion. Biol Reprod 37(1):55–59

    Article  CAS  PubMed  Google Scholar 

  • Boitani C, Di Persio S, Esposito V, Vicini E (2016) Spermatogonial cells: mouse, monkey and man comparison. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2016.03.002

  • Bouvattier C, Carel JC, Lecointre C, David A, Sultan C, Bertrand AM, Morel Y, Chaussain JL (2002) Postnatal changes of T, LH, and FSH in 46,XY infants with mutations in the AR gene. J Clin Endocrinol Metab 87(1):29–32. https://doi.org/10.1210/jcem.87.1.7923

    Article  CAS  PubMed  Google Scholar 

  • Burger HG (1988) Inhibin: definition and nomenclature, including related substances. J Endocrinol 117(2):159–160

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Chen YT, Yeh SD, Xu Q, Wang RS, Guillou F, Lardy H, Yeh S (2004) Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc Natl Acad Sci U S A 101(18):6876–6881. https://doi.org/10.1073/pnas.0307306101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charest NJ, Zhou ZX, Lubahn DB, Olsen KL, Wilson EM, French FS (1991) A frameshift mutation destabilizes androgen receptor messenger RNA in the Tfm mouse. Mol Endocrinol 5(4):573–581

    Article  CAS  PubMed  Google Scholar 

  • Chemes HE, Rey RA, Nistal M, Regadera J, Musse M, Gonzalez-Peramato P, Serrano A (2008) Physiological androgen insensitivity of the fetal, neonatal, and early infantile testis is explained by the ontogeny of the androgen receptor expression in Sertoli cells. J Clin Endocrinol Metab 93(11):4408–4412. https://doi.org/10.1210/jc.2008-0915

    Article  CAS  PubMed  Google Scholar 

  • Choong CS, Sturm MJ, Strophair JA, McCulloch RK, Hurley DM (1997) Reduced expression and normal nucleotide sequence of androgen receptor gene coding and promoter regions in a family with partial androgen insensitivity syndrome. Clin Endocrinol 46(3):281–288

    Article  CAS  Google Scholar 

  • Clements JA, Reyes FI, Winter JS, Faiman C (1976) Studies on human sexual development. III. Fetal pituitary and serum, and amniotic fluid concentrations of LH, CG, and FSH. J Clin Endocrinol Metab 42(1):9–19. https://doi.org/10.1210/jcem-42-1-9

    Article  CAS  PubMed  Google Scholar 

  • Clermont Y, Morgentaler H (1955) Quantitative study of spermatogenesis in the hypophysectomized rat. Endocrinology 57(3):369–382. https://doi.org/10.1210/endo-57-3-369

    Article  CAS  PubMed  Google Scholar 

  • Cools M, van Aerde K, Kersemaekers AM, Boter M, Drop SL, Wolffenbuttel KP, Steyerberg EW, Oosterhuis JW, Looijenga LH (2005) Morphological and immunohistochemical differences between gonadal maturation delay and early germ cell neoplasia in patients with undervirilization syndromes. J Clin Endocrinol Metab 90(9):5295–5303. https://doi.org/10.1210/jc.2005-0139

    Article  CAS  PubMed  Google Scholar 

  • Cortes D, Muller J, Skakkebaek NE (1987) Proliferation of Sertoli cells during development of the human testis assessed by stereological methods. Int J Androl 10(4):589–596

    Article  CAS  PubMed  Google Scholar 

  • De Gendt K, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M, Devos A, Tan K, Atanassova N, Claessens F, Lecureuil C, Heyns W, Carmeliet P, Guillou F, Sharpe RM, Verhoeven G (2004) A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci U S A 101(5):1327–1332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Debieve F, Beerlandt S, Hubinont C, Thomas K (2000) Gonadotropins, prolactin, inhibin A, inhibin B, and activin A in human fetal serum from midpregnancy and term pregnancy. J Clin Endocrinol Metab 85(1):270–274. https://doi.org/10.1210/jcem.85.1.6249

    Article  CAS  PubMed  Google Scholar 

  • Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M, Sassone-Corsi P (1998) Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci U S A 95(23):13612–13617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding LJ, Yan GJ, Ge QY, Yu F, Zhao X, Diao ZY, Wang ZQ, Yang ZZ, Sun HX, YL H (2011) FSH acts on the proliferation of type A spermatogonia via Nur77 that increases GDNF expression in the Sertoli cells. FEBS Lett 585(15):2437–2444. https://doi.org/10.1016/j.febslet.2011.06.013

    Article  CAS  PubMed  Google Scholar 

  • Dixson AF (1986) Plasma testosterone concentrations during postnatal development in the male common marmoset. Folia Primatol (Basel) 47(4):166–170

    Article  CAS  Google Scholar 

  • Dufau ML (1988) Endocrine regulation and communicating functions of the Leydig cell. Annu Rev Physiol 50:483–508. https://doi.org/10.1146/annurev.ph.50.030188.002411

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Joshi KR, Sengupta P, Bhattacharya K (2013) Unilateral and bilateral cryptorchidism and its effect on the testicular morphology, histology, accessory sex organs, and sperm count in laboratory mice. J Hum Reprod Sci 6(2):106–110. https://doi.org/10.4103/0974-1208.117172

    Article  PubMed  PubMed Central  Google Scholar 

  • Dwyer AA, Sykiotis GP, Hayes FJ, Boepple PA, Lee H, Loughlin KR, Dym M, Sluss PM, Crowley WF Jr, Pitteloud N (2013) Trial of recombinant follicle-stimulating hormone pretreatment for GnRH-induced fertility in patients with congenital hypogonadotropic hypogonadism. J Clin Endocrinol Metab 98(11):E1790–E1795. https://doi.org/10.1210/jc.2013-2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Shennawy A, Gates RJ, Russell LD (1998) Hormonal regulation of spermatogenesis in the hypophysectomized rat: cell viability after hormonal replacement in adults after intermediate periods of hypophysectomy. J Androl 19(3):320–334; discussion 341–322

    PubMed  Google Scholar 

  • Finkel DM, Phillips JL, Snyder PJ (1985) Stimulation of spermatogenesis by gonadotropins in men with hypogonadotropic hypogonadism. N Engl J Med 313(11):651–655. https://doi.org/10.1056/NEJM198509123131102

    Article  CAS  PubMed  Google Scholar 

  • Forest MG, Sizonenko PC, Cathiard AM, Bertrand J (1974) Hypophyso-gonadal function in humans during the first year of life. 1. Evidence for testicular activity in early infancy. J Clin Invest 53(3):819–828. https://doi.org/10.1172/JCI107621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouchecourt S, Godet M, Sabido O, Durand P (2006) Glial cell-line-derived neurotropic factor and its receptors are expressed by germinal and somatic cells of the rat testis. J Endocrinol 190(1):59–71. https://doi.org/10.1677/joe.1.06699

    Article  CAS  PubMed  Google Scholar 

  • Franca LR, Parreira GG, Gates RJ, Russell LD (1998) Hormonal regulation of spermatogenesis in the hypophysectomized rat: quantitation of germ-cell population and effect of elimination of residual testosterone after long-term hypophysectomy. J Androl 19(3):335–340; discussion 341–332

    CAS  PubMed  Google Scholar 

  • Furuchi T, Masuko K, Nishimune Y, Obinata M, Matsui Y (1996) Inhibition of testicular germ cell apoptosis and differentiation in mice misexpressing Bcl-2 in spermatogonia. Development 122(6):1703–1709

    CAS  PubMed  Google Scholar 

  • Gao T, Marcelli M, McPhaul MJ (1996) Transcriptional activation and transient expression of the human androgen receptor. J Steroid Biochem Mol Biol 59(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • Gaspar ML, Meo T, Bourgarel P, Guenet JL, Tosi M (1991) A single base deletion in the Tfm androgen receptor gene creates a short-lived messenger RNA that directs internal translation initiation. Proc Natl Acad Sci U S A 88(19):8606–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George JW, Dille EA, Heckert LL (2011) Current concepts of follicle-stimulating hormone receptor gene regulation. Biol Reprod 84(1):7–17. https://doi.org/10.1095/biolreprod.110.085043

    Article  CAS  PubMed  Google Scholar 

  • Golden JP, DeMaro JA, Osborne PA, Milbrandt J, Johnson EM Jr (1999) Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse. Exp Neurol 158(2):504–528. https://doi.org/10.1006/exnr.1999.7127

    Article  CAS  PubMed  Google Scholar 

  • Greep RO, Fevold HL, Hisaw FL (1936) Effects of two hypophyseal gonadotrophic hormones on the reproductive system of the male rat. Anat Rec 65:261–270

    Article  CAS  Google Scholar 

  • Griesinger G, Felberbaum R, Diedrich K (2005) GnRH-antagonists in reproductive medicine. Arch Gynecol Obstet 273(2):71–78. https://doi.org/10.1007/s00404-005-0021-2

    Article  CAS  PubMed  Google Scholar 

  • Grumbach MM (2002) The neuroendocrinology of human puberty revisited. Horm Res 57(Suppl 2):2–14

    CAS  PubMed  Google Scholar 

  • Hadziselimovic F (2005) For debate: is mini puberty the right terminology? Pediatr Endocrinol Rev 2(4):644

    PubMed  Google Scholar 

  • Hadziselimovic F, Herzog B (2001) Importance of early postnatal germ cell maturation for fertility of cryptorchid males. Horm Res 55(1):6–10

    CAS  PubMed  Google Scholar 

  • Hannema SE, Scott IS, Rajpert-De Meyts E, Skakkebaek NE, Coleman N, Hughes IA (2006) Testicular development in the complete androgen insensitivity syndrome. J Pathol 208(4):518–527. https://doi.org/10.1002/path.1890

    Article  CAS  PubMed  Google Scholar 

  • Haywood M, Tymchenko N, Spaliviero J, Koch A, Jimenez M, Gromoll J, Simoni M, Nordhoff V, Handelsman DJ, Allan CM (2002) An activated human follicle-stimulating hormone (FSH) receptor stimulates FSH-like activity in gonadotropin-deficient transgenic mice. Mol Endocrinol 16(11):2582–2591

    Article  CAS  PubMed  Google Scholar 

  • Haywood M, Spaliviero J, Jimemez M, King NJ, Handelsman DJ, Allan CM (2003) Sertoli and germ cell development in hypogonadal (hpg) mice expressing transgenic follicle-stimulating hormone alone or in combination with testosterone. Endocrinology 144(2):509–517

    Article  CAS  PubMed  Google Scholar 

  • Hedinger E (1982) Histopathology of undescended testes. Eur J Pediatr 139(4):266–271

    Article  CAS  PubMed  Google Scholar 

  • Hikim AP, Swerdloff RS (1995) Temporal and stage-specific effects of recombinant human follicle-stimulating hormone on the maintenance of spermatogenesis in gonadotropin-releasing hormone antagonist-treated rat. Endocrinology 136(1):253–261. https://doi.org/10.1210/endo.136.1.7828538

    Article  CAS  PubMed  Google Scholar 

  • Huff DS, Fenig DM, Canning DA, Carr MG, Zderic SA, Snyder HM 3rd (2001) Abnormal germ cell development in cryptorchidism. Horm Res 55(1):11–17

    CAS  PubMed  Google Scholar 

  • Hughes IA, Davies JD, Bunch TI, Pasterski V, Mastroyannopoulou K, MacDougall J (2012) Androgen insensitivity syndrome. Lancet 380(9851):1419–1428. https://doi.org/10.1016/S0140-6736(12)60071-3

    Article  CAS  PubMed  Google Scholar 

  • Huhtaniemi IT, Yamamoto M, Ranta T, Jalkanen J, Jaffe RB (1987) Follicle-stimulating hormone receptors appear earlier in the primate fetal testis than in the ovary. J Clin Endocrinol Metab 65(6):1210–1214. https://doi.org/10.1210/jcem-65-6-1210

    Article  CAS  PubMed  Google Scholar 

  • Irfan S, Wistuba J, Ehmcke J, Shahab M, Schlatt S (2015) Pubertal and testicular development in the common marmoset (Callithrix jacchus) shows high individual variation. Primate Biol 2:1–8. https://doi.org/10.5194/pb-2-1-2015

    Article  Google Scholar 

  • Japon MA, Rubinstein M, Low MJ (1994) In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development. J Histochem Cytochem 42(8):1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Jean-Faucher C, Berger M, de Turckheim M, Veyssiere G, Jean C (1978) Developmental patterns of plasma and testicular testosterone in mice from birth to adulthood. Acta Endocrinol 89(4):780–788

    CAS  PubMed  Google Scholar 

  • Johnston H, Baker PJ, Abel M, Charlton HM, Jackson G, Fleming L, Kumar TR, O’Shaughnessy PJ (2004) Regulation of Sertoli cell number and activity by follicle-stimulating hormone and androgen during postnatal development in the mouse. Endocrinology 145(1):318–329. https://doi.org/10.1210/en.2003-1055

    Article  CAS  PubMed  Google Scholar 

  • Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270(5233):96–99

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy H, Babu PS, Morales CR, Sairam MR (2001a) Delay in sexual maturity of the follicle-stimulating hormone receptor knockout male mouse. Biol Reprod 65(2):522–531

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy H, Kats R, Danilovich N, Javeshghani D, Sairam MR (2001b) Intercellular communication between Sertoli cells and Leydig cells in the absence of follicle-stimulating hormone-receptor signaling. Biol Reprod 65(4):1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Kumar TR, Wang Y, Lu N, Matzuk MM (1997) Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 15(2):201–204. https://doi.org/10.1038/ng0297-201

    Article  CAS  PubMed  Google Scholar 

  • Kumar PA, Pitteloud N, Andrews PA, Dwyer A, Hayes F, Crowley WF Jr, Dym M (2006) Testis morphology in patients with idiopathic hypogonadotropic hypogonadism. Hum Reprod 21(4):1033–1040. https://doi.org/10.1093/humrep/dei444

    Article  PubMed  Google Scholar 

  • Lavoie HA, King SR (2009) Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B. Exp Biol Med (Maywood) 234(8):880–907. https://doi.org/10.3181/0903-MR-97

    Article  CAS  Google Scholar 

  • Layman LC, Porto AL, Xie J, da Motta LA, da Motta LD, Weiser W, Sluss PM (2002) FSH beta gene mutations in a female with partial breast development and a male sibling with normal puberty and azoospermia. J Clin Endocrinol Metab 87(8):3702–3707

    CAS  PubMed  Google Scholar 

  • Lei ZM, Mishra S, Zou W, Xu B, Foltz M, Li X, Rao CV (2001) Targeted disruption of luteinizing hormone/human chorionic gonadotropin receptor gene. Mol Endocrinol 15(1):184–200

    Article  CAS  PubMed  Google Scholar 

  • Li LH, Donald JM, Golub MS (2005) Review on testicular development, structure, function, and regulation in common marmoset. Birth Defects Res B Dev Reprod Toxicol 74(5):450–469. https://doi.org/10.1002/bdrb.20057

    Article  CAS  PubMed  Google Scholar 

  • Lindstedt G, Nystrom E, Matthews C, Ernest I, Janson PO, Chatterjee K (1998) Follitropin (FSH) deficiency in an infertile male due to FSHbeta gene mutation. A syndrome of normal puberty and virilization but underdeveloped testicles with azoospermia, low FSH but high lutropin and normal serum testosterone concentrations. Clin Chem Lab Med 36(8):663–665. https://doi.org/10.1515/CCLM.1998.118

    Article  CAS  PubMed  Google Scholar 

  • Livera G, Delbes G, Pairault C, Rouiller-Fabre V, Habert R (2006) Organotypic culture, a powerful model for studying rat and mouse fetal testis development. Cell Tissue Res 324(3):507–521. https://doi.org/10.1007/s00441-006-0167-7

    Article  PubMed  Google Scholar 

  • Lunn SF, Recio R, Morris K, Fraser HM (1994) Blockade of the neonatal rise in testosterone by a gonadotrophin-releasing hormone antagonist: effects on timing of puberty and sexual behaviour in the male marmoset monkey. J Endocrinol 141(3):439–447

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Dong Y, Matzuk MM, Kumar TR (2004) Targeted disruption of luteinizing hormone beta-subunit leads to hypogonadism, defects in gonadal steroidogenesis, and infertility. Proc Natl Acad Sci U S A 101(49):17294–17299. https://doi.org/10.1073/pnas.0404743101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann DR, Fraser HM (1996) The neonatal period: a critical interval in male primate development. J Endocrinol 149(2):191–197

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Xu H, Wang X, Huang B, Liu Z, Zhen J, Nie M, Min L, Wu X (2015) Congenital combined pituitary hormone deficiency patients have better responses to gonadotrophin-induced spermatogenesis than idiopathic hypogonadotropic hypogonadism patients. Hum Reprod 30(9):2031–2037. https://doi.org/10.1093/humrep/dev158

    Article  CAS  PubMed  Google Scholar 

  • Marshall GR, Jockenhovel F, Ludecke D, Nieschlag E (1986) Maintenance of complete but quantitatively reduced spermatogenesis in hypophysectomized monkeys by testosterone alone. Acta Endocrinol 113(3):424–431

    CAS  PubMed  Google Scholar 

  • Marshall GR, Zorub DS, Plant TM (1995) Follicle-stimulating hormone amplifies the population of differentiated spermatogonia in the hypophysectomized testosterone-replaced adult rhesus monkey (Macaca mulatta). Endocrinology 136(8):3504–3511. https://doi.org/10.1210/endo.136.8.7628387

    Article  CAS  PubMed  Google Scholar 

  • Marshall GR, Ramaswamy S, Plant TM (2005) Gonadotropin-independent proliferation of the pale type A spermatogonia in the adult rhesus monkey (Macaca mulatta). Biol Reprod 73(2):222–229. https://doi.org/10.1095/biolreprod.104.038968

    Article  CAS  PubMed  Google Scholar 

  • Mason AJ, Hayflick JS, Zoeller RT, Young WS 3rd, Phillips HS, Nikolics K, Seeburg PH (1986) A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypogonadism in the hpg mouse. Science 234(4782):1366–1371

    Article  CAS  PubMed  Google Scholar 

  • Matthiesson KL, McLachlan RI, O’Donnell L, Frydenberg M, Robertson DM, Stanton PG, Meachem SJ (2006) The relative roles of follicle-stimulating hormone and luteinizing hormone in maintaining spermatogonial maturation and spermiation in normal men. J Clin Endocrinol Metab 91(10):3962–3969. https://doi.org/10.1210/jc.2006-1145

    Article  CAS  PubMed  Google Scholar 

  • Mauduit C, Hamamah S, Benahmed M (1999) Stem cell factor/c-kit system in spermatogenesis. Hum Reprod Update 5(5):535–545

    Article  CAS  PubMed  Google Scholar 

  • Mayerhofer A (2013) Human testicular peritubular cells: more than meets the eye. Reproduction 145(5):R107–R116. https://doi.org/10.1530/REP-12-0497

    Article  CAS  PubMed  Google Scholar 

  • McLachlan RI, Wreford NG, Meachem SJ, De Kretser DM, Robertson DM (1994) Effects of testosterone on spermatogenic cell populations in the adult rat. Biol Reprod 51(5):945–955

    Article  CAS  PubMed  Google Scholar 

  • McLachlan RI, Wreford NG, de Kretser DM, Robertson DM (1995) The effects of recombinant follicle-stimulating hormone on the restoration of spermatogenesis in the gonadotropin-releasing hormone-immunized adult rat. Endocrinology 136(9):4035–4043. https://doi.org/10.1210/endo.136.9.7649112

    Article  CAS  PubMed  Google Scholar 

  • McLachlan RI, O’Donnell L, Stanton PG, Balourdos G, Frydenberg M, de Kretser DM, Robertson DM (2002) Effects of testosterone plus medroxyprogesterone acetate on semen quality, reproductive hormones, and germ cell populations in normal young men. J Clin Endocrinol Metab 87(2):546–556. https://doi.org/10.1210/jcem.87.2.8231

    Article  CAS  PubMed  Google Scholar 

  • Meachem SJ, Wreford NG, Robertson DM, McLachlan RI (1997) Androgen action on the restoration of spermatogenesis in adult rats: effects of human chorionic gonadotrophin, testosterone and flutamide administration on germ cell number. Int J Androl 20(2):70–79

    Article  CAS  PubMed  Google Scholar 

  • Meachem SJ, Wreford NG, Stanton PG, Robertson DM, McLachlan RI (1998) Follicle-stimulating hormone is required for the initial phase of spermatogenic restoration in adult rats following gonadotropin suppression. J Androl 19(6):725–735

    CAS  PubMed  Google Scholar 

  • Meachem SJ, McLachlan RI, Stanton PG, Robertson DM, Wreford NG (1999) FSH immunoneutralization acutely impairs spermatogonial development in normal adult rats. J Androl 20(6):756–762; discussion 755

    CAS  PubMed  Google Scholar 

  • Meachem SJ, Nieschlag E, Simoni M (2001) Inhibin B in male reproduction: pathophysiology and clinical relevance. Eur J Endocrinol 145(5):561–571

    Article  CAS  PubMed  Google Scholar 

  • Meachem SJ, Ruwanpura SM, Ziolkowski J, Ague JM, Skinner MK, Loveland KL (2005) Developmentally distinct in vivo effects of FSH on proliferation and apoptosis during testis maturation. J Endocrinol 186(3):429–446. https://doi.org/10.1677/joe.1.06121

    Article  CAS  PubMed  Google Scholar 

  • Medhamurthy R, Aravindan GR, Moudgal NR (1993) Hemiorchidectomy leads to dramatic and immediate alterations in pituitary follicle-stimulating hormone secretion and the functional activity of the remaining testis in the adult male bonnet monkey (Macaca radiata). Biol Reprod 49(4):743–749

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287(5457):1489–1493

    Article  CAS  PubMed  Google Scholar 

  • Merlet J, Racine C, Moreau E, Moreno SG, Habert R (2007) Male fetal germ cells are targets for androgens that physiologically inhibit their proliferation. Proc Natl Acad Sci U S A 104(9):3615–3620. https://doi.org/10.1073/pnas.0611421104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migrenne S, Moreau E, Pakarinen P, Dierich A, Merlet J, Habert R, Racine C (2012) Mouse testis development and function are differently regulated by follicle-stimulating hormone receptors signaling during fetal and prepubertal life. PLoS One 7(12):e53257. https://doi.org/10.1371/journal.pone.0053257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millar RP (2005) GnRHs and GnRH receptors. Anim Reprod Sci 88(1–2):5–28. https://doi.org/10.1016/j.anireprosci.2005.05.032

    Article  CAS  PubMed  Google Scholar 

  • Miller WL, Bose HS (2011) Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res 52(12):2111–2135. https://doi.org/10.1194/jlr.R016675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naik SI, Young LS, Charlton HM, Clayton RN (1984) Pituitary gonadotropin-releasing hormone receptor regulation in mice. I: males. Endocrinology 115(1):106–113. https://doi.org/10.1210/endo-115-1-106

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell L, Narula A, Balourdos G, YQ G, Wreford NG, Robertson DM, Bremner WJ, McLachlan RI (2001) Impairment of spermatogonial development and spermiation after testosterone-induced gonadotropin suppression in adult monkeys (Macaca fascicularis). J Clin Endocrinol Metab 86(4):1814–1822. https://doi.org/10.1210/jcem.86.4.7400

    Article  PubMed  Google Scholar 

  • O’Hara L, Welsh M, Saunders PT, Smith LB (2011) Androgen receptor expression in the caput epididymal epithelium is essential for development of the initial segment and epididymal spermatozoa transit. Endocrinology 152(2):718–729. https://doi.org/10.1210/en.2010-0928

    Article  PubMed  CAS  Google Scholar 

  • O’Hara L, Curley M, Tedim Ferreira M, Cruickshanks L, Milne L, Smith LB (2015) Pituitary androgen receptor signalling regulates prolactin but not gonadotrophins in the male mouse. PLoS One 10(3):e0121657. https://doi.org/10.1371/journal.pone.0121657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Shaughnessy PJ, Morris ID, Huhtaniemi I, Baker PJ, Abel MH (2009) Role of androgen and gonadotrophins in the development and function of the Sertoli cells and Leydig cells: data from mutant and genetically modified mice. Mol Cell Endocrinol 306(1–2):2–8. https://doi.org/10.1016/j.mce.2008.11.005

    Article  PubMed  CAS  Google Scholar 

  • O’Shaughnessy PJ, Monteiro A, Verhoeven G, De Gendt K, Abel MH (2010a) Effect of FSH on testicular morphology and spermatogenesis in gonadotrophin-deficient hypogonadal mice lacking androgen receptors. Reproduction 139(1):177–184. https://doi.org/10.1530/REP-09-0377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Shaughnessy PJ, Verhoeven G, De Gendt K, Monteiro A, Abel MH (2010b) Direct action through the sertoli cells is essential for androgen stimulation of spermatogenesis. Endocrinology 151(5):2343–2348. https://doi.org/10.1210/en.2009-1333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Shaughnessy PJ, Monteiro A, Abel M (2012) Testicular development in mice lacking receptors for follicle stimulating hormone and androgen. PLoS One 7(4):e35136. https://doi.org/10.1371/journal.pone.0035136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orth JM (1986) FSH-induced Sertoli cell proliferation in the developing rat is modified by beta-endorphin produced in the testis. Endocrinology 119(4):1876–1878. https://doi.org/10.1210/endo-119-4-1876

    Article  CAS  PubMed  Google Scholar 

  • Pakarinen P, Kimura S, El-Gehani F, Pelliniemi LJ, Huhtaniemi I (2002) Pituitary hormones are not required for sexual differentiation of male mice: phenotype of the T/ebp/Nkx2.1 null mutant mice. Endocrinology 143(11):4477–4482

    Article  CAS  PubMed  Google Scholar 

  • Paniagua R, Nistal M (1984) Morphological and histometric study of human spermatogonia from birth to the onset of puberty. J Anat 139(Pt 3):535–552

    PubMed  PubMed Central  Google Scholar 

  • Phillip M, Arbelle JE, Segev Y, Parvari R (1998) Male hypogonadism due to a mutation in the gene for the beta-subunit of follicle-stimulating hormone. N Engl J Med 338(24):1729–1732. https://doi.org/10.1056/NEJM199806113382404

    Article  CAS  PubMed  Google Scholar 

  • Pitteloud N, Dwyer AA, DeCruz S, Lee H, Boepple PA, Crowley WF Jr, Hayes FJ (2008) Inhibition of luteinizing hormone secretion by testosterone in men requires aromatization for its pituitary but not its hypothalamic effects: evidence from the tandem study of normal and gonadotropin-releasing hormone-deficient men. J Clin Endocrinol Metab 93(3):784–791. https://doi.org/10.1210/jc.2007-2156

    Article  CAS  PubMed  Google Scholar 

  • Purvis K, Clausen OP, Hansson V (1979) LH contamination may explain FSH effects on rat Leydig cells. J Reprod Fertil 56(2):657–665

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy S, Marshall GR, McNeilly AS, Plant TM (2000) Dynamics of the follicle-stimulating hormone (FSH)-inhibin B feedback loop and its role in regulating spermatogenesis in the adult male rhesus monkey (Macaca mulatta) as revealed by unilateral orchidectomy. Endocrinology 141(1):18–27. https://doi.org/10.1210/endo.141.1.7276

    Article  CAS  PubMed  Google Scholar 

  • Rannikki AS, Zhang FP, Huhtaniemi IT (1995) Ontogeny of follicle-stimulating hormone receptor gene expression in the rat testis and ovary. Mol Cell Endocrinol 107(2):199–208

    Article  CAS  PubMed  Google Scholar 

  • Rey RA, Musse M, Venara M, Chemes HE (2009) Ontogeny of the androgen receptor expression in the fetal and postnatal testis: its relevance on Sertoli cell maturation and the onset of adult spermatogenesis. Microsc Res Tech 72(11):787–795. https://doi.org/10.1002/jemt.20754

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P (1997) An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J 16(9):2262–2270. https://doi.org/10.1093/emboj/16.9.2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi P, Albanesi C, Grimaldi P, Geremia R (1991) Expression of the mRNA for the ligand of c-kit in mouse Sertoli cells. Biochem Biophys Res Commun 176(2):910–914

    Article  CAS  PubMed  Google Scholar 

  • Rossi P, Dolci S, Albanesi C, Grimaldi P, Ricca R, Geremia R (1993) Follicle-stimulating hormone induction of steel factor (SLF) mRNA in mouse Sertoli cells and stimulation of DNA synthesis in spermatogonia by soluble SLF. Dev Biol 155(1):68–74. https://doi.org/10.1006/dbio.1993.1007

    Article  CAS  PubMed  Google Scholar 

  • Russell LD, Kershaw M, Borg KE, El Shennawy A, Rulli SS, Gates RJ, Calandra RS (1998) Hormonal regulation of spermatogenesis in the hypophysectomized rat: FSH maintenance of cellular viability during pubertal spermatogenesis. J Androl 19(3):308–319; discussion 341–302

    CAS  PubMed  Google Scholar 

  • Russell LD, Chiarini-Garcia H, Korsmeyer SJ, Knudson CM (2002) Bax-dependent spermatogonia apoptosis is required for testicular development and spermatogenesis. Biol Reprod 66(4):950–958

    Article  CAS  PubMed  Google Scholar 

  • Ruwanpura SM, McLachlan RI, Matthiesson KL, Meachem SJ (2008a) Gonadotrophins regulate germ cell survival, not proliferation, in normal adult men. Hum Reprod 23(2):403–411. https://doi.org/10.1093/humrep/dem376

    Article  CAS  PubMed  Google Scholar 

  • Ruwanpura SM, McLachlan RI, Stanton PG, Loveland KL, Meachem SJ (2008b) Pathways involved in testicular germ cell apoptosis in immature rats after FSH suppression. J Endocrinol 197(1):35–43. https://doi.org/10.1677/JOE-07-0637

    Article  CAS  PubMed  Google Scholar 

  • Ryan RJ, Charlesworth MC, McCormick DJ, Milius RP, Keutmann HT (1988) The glycoprotein hormones: recent studies of structure-function relationships. FASEB J 2(11):2661–2669

    CAS  PubMed  Google Scholar 

  • Sasaki M, Yamamoto M, Arishima K, Eguchi Y (2000) Effect of follicle-stimulating hormone on sertoli cell division in cultures of fetal rat testes. Biol Neonate 78(1):48–52

    Article  CAS  PubMed  Google Scholar 

  • Savage JJ, Yaden BC, Kiratipranon P, Rhodes SJ (2003) Transcriptional control during mammalian anterior pituitary development. Gene 319:1–19. https://doi.org/10.1016/S0378-1119(03)00804-7

    Article  CAS  PubMed  Google Scholar 

  • Schlatt S, Ehmcke J (2014) Regulation of spermatogenesis: an evolutionary biologist’s perspective. Semin Cell Dev Biol 29:2–16. https://doi.org/10.1016/j.semcdb.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  • Scott HM, Mason JI, Sharpe RM (2009) Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev 30(7):883–925. https://doi.org/10.1210/er.2009-0016

    Article  CAS  PubMed  Google Scholar 

  • Selice R, Ferlin A, Garolla A, Caretta N, Foresta C (2011) Effects of endogenous FSH on normal human spermatogenesis in adults. Int J Androl 34(6 Pt 2):e511–e517. https://doi.org/10.1111/j.1365-2605.2010.01134.x

    Article  CAS  PubMed  Google Scholar 

  • Sharpe RM, Turner KJ, McKinnell C, Groome NP, Atanassova N, Millar MR, Buchanan DL, Cooke PS (1999) Inhibin B levels in plasma of the male rat from birth to adulthood: effect of experimental manipulation of Sertoli cell number. J Androl 20(1):94–101

    CAS  PubMed  Google Scholar 

  • Sharpe RM, Walker M, Millar MR, Atanassova N, Morris K, McKinnell C, Saunders PT, Fraser HM (2000) Effect of neonatal gonadotropin-releasing hormone antagonist administration on sertoli cell number and testicular development in the marmoset: comparison with the rat. Biol Reprod 62(6):1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Sharpe RM, Fraser HM, Brougham MF, McKinnell C, Morris KD, Kelnar CJ, Wallace WH, Walker M (2003) Role of the neonatal period of pituitary-testicular activity in germ cell proliferation and differentiation in the primate testis. Hum Reprod 18(10):2110–2117

    Article  CAS  PubMed  Google Scholar 

  • Shetty G, Weng CC, Porter KL, Zhang Z, Pakarinen P, Kumar TR, Meistrich ML (2006) Spermatogonial differentiation in juvenile spermatogonial depletion (jsd) mice with androgen receptor or follicle-stimulating hormone mutations. Endocrinology 147(7):3563–3570

    Article  CAS  PubMed  Google Scholar 

  • Simon L, Ekman GC, Tyagi G, Hess RA, Murphy KM, Cooke PS (2007) Common and distinct factors regulate expression of mRNA for ETV5 and GDNF, Sertoli cell proteins essential for spermatogonial stem cell maintenance. Exp Cell Res 313(14):3090–3099. https://doi.org/10.1016/j.yexcr.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  • Simorangkir DR, Ramaswamy S, Marshall GR, Pohl CR, Plant TM (2009a) A selective monotropic elevation of FSH, but not that of LH, amplifies the proliferation and differentiation of spermatogonia in the adult rhesus monkey (Macaca mulatta). Hum Reprod 24(7):1584–1595. https://doi.org/10.1093/humrep/dep052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simorangkir DR, Marshall GR, Plant TM (2009b) A re-examination of proliferation and differentiation of type A spermatogonia in the adult rhesus monkey (Macaca mulatta). Hum Reprod 24(7):1596–1604. https://doi.org/10.1093/humrep/dep051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, O’Neill C, Handelsman DJ (1995) Induction of spermatogenesis by androgens in gonadotropin-deficient (hpg) mice. Endocrinology 136(12):5311–5321

    Article  CAS  PubMed  Google Scholar 

  • Sizonenko PC, Paunier L (1975) Hormonal changes in puberty III: correlation of plasma dehydroepiandrosterone, testosterone, FSH, and LH with stages of puberty and bone age in normal boys and girls and in patients with Addison’s disease or hypogonadism or with premature or late adrenarche. J Clin Endocrinol Metab 41(5):894–904. https://doi.org/10.1210/jcem-41-5-894

    Article  CAS  PubMed  Google Scholar 

  • Smith PE (1944) Maintenance and restoration of spermatogenesis in hypophysectomized rhesus monkeys by androgen administration. Yale J Biol Med 17(1):281–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PE, Engle ET (1927) Experimental evidence regarding the role of the anterior pituitary in development and regulation of the genital system. Am J Anatomy 40:159–168

    Article  Google Scholar 

  • Srinath BR, Wickings EJ, Witting C, Nieschlag E (1983) Active immunization with follicle-stimulating hormone for fertility control: a 4 1/2-year study in male rhesus monkeys. Fertil Steril 40(1):110–117

    Article  CAS  PubMed  Google Scholar 

  • Suresh PS, Rajan T, Tsutsumi R (2011) New targets for old hormones: inhibins clinical role revisited. Endocr J 58(4):223–235

    Article  CAS  PubMed  Google Scholar 

  • Tadokoro Y, Yomogida K, Ohta H, Tohda A, Nishimune Y (2002) Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech Dev 113(1):29–39

    Article  CAS  PubMed  Google Scholar 

  • Tan KA, De Gendt K, Atanassova N, Walker M, Sharpe RM, Saunders PT, Denolet E, Verhoeven G (2005) The role of androgens in sertoli cell proliferation and functional maturation: studies in mice with total or Sertoli cell-selective ablation of the androgen receptor. Endocrinology 146(6):2674–2683

    Article  CAS  PubMed  Google Scholar 

  • Tapanainen JS, Aittomaki K, Min J, Vaskivuo T, Huhtaniemi IT (1997) Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet 15(2):205–206. https://doi.org/10.1038/ng0297-205

    Article  CAS  PubMed  Google Scholar 

  • Tilbrook AJ, Clarke IJ (2001) Negative feedback regulation of the secretion and actions of gonadotropin-releasing hormone in males. Biol Reprod 64(3):735–742

    Article  CAS  PubMed  Google Scholar 

  • Trupp M, Ryden M, Jornvall H, Funakoshi H, Timmusk T, Arenas E, Ibanez CF (1995) Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol 130(1):137–148

    Article  CAS  PubMed  Google Scholar 

  • van Alphen MM, van de Kant HJ, de Rooij DG (1988) Follicle-stimulating hormone stimulates spermatogenesis in the adult monkey. Endocrinology 123(3):1449–1455. https://doi.org/10.1210/endo-123-3-1449

    Article  PubMed  Google Scholar 

  • Vergouwen RP, Jacobs SG, Huiskamp R, Davids JA, de Rooij DG (1991) Proliferative activity of gonocytes, Sertoli cells and interstitial cells during testicular development in mice. J Reprod Fertil 93(1):233–243

    Article  CAS  PubMed  Google Scholar 

  • Vergouwen RP, Huiskamp R, Bas RJ, Roepers-Gajadien HL, Davids JA, de Rooij DG (1993) Postnatal development of testicular cell populations in mice. J Reprod Fertil 99(2):479–485

    Article  CAS  PubMed  Google Scholar 

  • Walker WH, Cheng J (2005) FSH and testosterone signaling in Sertoli cells. Reproduction 130(1):15–28. https://doi.org/10.1530/rep.1.00358

    Article  CAS  PubMed  Google Scholar 

  • Warren DW, Huhtaniemi IT, Tapanainen J, Dufau ML, Catt KJ (1984) Ontogeny of gonadotropin receptors in the fetal and neonatal rat testis. Endocrinology 114(2):470–476. https://doi.org/10.1210/endo-114-2-470

    Article  CAS  PubMed  Google Scholar 

  • Weinbauer GF, Behre HM, Fingscheidt U, Nieschlag E (1991) Human follicle-stimulating hormone exerts a stimulatory effect on spermatogenesis, testicular size, and serum inhibin levels in the gonadotropin-releasing hormone antagonist-treated nonhuman primate (Macaca fascicularis). Endocrinology 129(4):1831–1839. https://doi.org/10.1210/endo-129-4-1831

    Article  CAS  PubMed  Google Scholar 

  • Welsh M, Saunders PT, Atanassova N, Sharpe RM, Smith LB (2009) Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J 23(12):4218–4230. https://doi.org/10.1096/fj.09-138347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen Q, Liu Y, Gao F (2011) Fate determination of fetal Leydig cells. Front Biol 6(1):12–18. https://doi.org/10.1007/s11515-011-1100-3

    Article  Google Scholar 

  • Wickings EJ, Nieschlag E (1978) The effects of active immunization with testosterone on pituitary-gonadal feedback in the male rhesus monkey (Macaca mulatta). Biol Reprod 18(4):602–607

    Article  CAS  PubMed  Google Scholar 

  • Willems A, De Gendt K, Allemeersch J, Smith LB, Welsh M, Swinnen JV, Verhoeven G (2009) Early effects of Sertoli cell-selective androgen receptor ablation on testicular gene expression. Int J Androl 33(3):507–517. https://doi.org/10.1111/j.1365-2605.2009.00964.x

    Article  PubMed  CAS  Google Scholar 

  • Wreford NG, Rajendra Kumar T, Matzuk MM, de Kretser DM (2001) Analysis of the testicular phenotype of the follicle-stimulating hormone beta-subunit knockout and the activin type II receptor knockout mice by stereological analysis. Endocrinology 142(7):2916–2920

    Article  CAS  PubMed  Google Scholar 

  • Wu FC, Butler GE, Kelnar CJ, Stirling HF, Huhtaniemi I (1991) Patterns of pulsatile luteinizing hormone and follicle-stimulating hormone secretion in prepubertal (midchildhood) boys and girls and patients with idiopathic hypogonadotropic hypogonadism (Kallmann’s syndrome): a study using an ultrasensitive time-resolved immunofluorometric assay. J Clin Endocrinol Metab 72(6):1229–1237. https://doi.org/10.1210/jcem-72-6-1229

    Article  CAS  PubMed  Google Scholar 

  • Wu FC, Butler GE, Kelnar CJ, Huhtaniemi I, Veldhuis JD (1996) Ontogeny of pulsatile gonadotropin releasing hormone secretion from midchildhood, through puberty, to adulthood in the human male: a study using deconvolution analysis and an ultrasensitive immunofluorometric assay. J Clin Endocrinol Metab 81(5):1798–1805. https://doi.org/10.1210/jcem.81.5.8626838

    CAS  PubMed  Google Scholar 

  • Yan W, Linderborg J, Suominen J, Toppari J (1999) Stage-specific regulation of stem cell factor gene expression in the rat seminiferous epithelium. Endocrinology 140(3):1499–1504. https://doi.org/10.1210/endo.140.3.6590

    Article  CAS  PubMed  Google Scholar 

  • Yeh S, Tsai MY, Xu Q, XM M, Lardy H, Huang KE, Lin H, Yeh SD, Altuwaijri S, Zhou X, Xing L, Boyce BF, Hung MC, Zhang S, Gan L, Chang C (2002) Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci U S A 99(21):13498–13503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang FP, Hamalainen T, Kaipia A, Pakarinen P, Huhtaniemi I (1994) Ontogeny of luteinizing hormone receptor gene expression in the rat testis. Endocrinology 134(5):2206–2213

    Article  CAS  PubMed  Google Scholar 

  • Zhang FP, Poutanen M, Wilbertz J, Huhtaniemi I (2001) Normal prenatal but arrested postnatal sexual development of luteinizing hormone receptor knockout (LuRKO) mice. Mol Endocrinol 15(1):172–183

    Article  CAS  PubMed  Google Scholar 

  • Zhang FP, Pakarainen T, Poutanen M, Toppari J, Huhtaniemi I (2003) The low gonadotropin-independent constitutive production of testicular testosterone is sufficient to maintain spermatogenesis. Proc Natl Acad Sci U S A 100(23):13692–13697. https://doi.org/10.1073/pnas.2232815100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhengwei Y, Wreford NG, Schlatt S, Weinbauer GF, Nieschlag E, McLachlan RI (1998a) Acute and specific impairment of spermatogonial development by GnRH antagonist-induced gonadotrophin withdrawal in the adult macaque (Macaca fascicularis). J Reprod Fertil 112(1):139–147

    Article  CAS  PubMed  Google Scholar 

  • Zhengwei Y, Wreford NG, Royce P, de Kretser DM, McLachlan RI (1998b) Stereological evaluation of human spermatogenesis after suppression by testosterone treatment: heterogeneous pattern of spermatogenic impairment. J Clin Endocrinol Metab 83(4):1284–1291. https://doi.org/10.1210/jcem.83.4.4724

    CAS  PubMed  Google Scholar 

  • Zhou Q, Nie R, Prins GS, Saunders PT, Katzenellenbogen BS, Hess RA (2002) Localization of androgen and estrogen receptors in adult male mouse reproductive tract. J Androl 23(6):870–881

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee B. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitchell, R.T., O’Hara, L., Smith, L.B. (2017). Gonadotropin and Steroid Hormone Control of Spermatogonial Differentiation. In: Oatley, J., Griswold, M. (eds) The Biology of Mammalian Spermatogonia. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7505-1_7

Download citation

Publish with us

Policies and ethics