Skip to main content
Log in

Organotypic culture, a powerful model for studying rat and mouse fetal testis development

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The key role of the fetal testis in the masculinization of genital organs has been known for a long time. More recently, the observed increases in male reproductive disorders has been postulated to be the result of changes in fetal and neonatal testis development in response to increasing environmental pollution. However, few tools are available for studying fetal testis development and the effects of physiological or toxic substances. We have developed an organ culture system in which rat fetal testis is grown on a filter floating on a synthetic medium containing no serum, hormones or biological factors. In this study, we have compared the long-term morpho-functional development of the various testicular cell types in this system with that observed in vivo and have extended this system to the mouse. Rat Leydig, Sertoli and germ cells and macrophages develop normally over a period of 1–2 weeks in this system. Fewer cells are produced than in vivo but the level of differentiated function is similar. Germ cells, which are difficult to culture in vitro, resume mitosis after a quiescent period, at the same time as in vivo. Similar results have been obtained with mouse fetuses, except that Leydig cells dedifferentiate in vitro if the testis is explanted after 13.5 days post conception. Testicular architecture and intercellular communication are sufficiently preserved for the development of the main fetal and neonatal testicular cell types in vitro with no added factors. Our floating-filter organotypic culture system in synthetic medium therefore allows the morpho-functional development of somatic and germ cells in fetal testis explants taken at all developmental stages in rat and at early stages in mouse. This method is potentially useful for studies of the effects of various factors, and of xenobiotics, in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:238–248

    Article  Google Scholar 

  • Baker PJ, O’Shaughnessy PJ (2001) Role of gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development in mice. Reproduction 122:227–234

    Article  PubMed  CAS  Google Scholar 

  • Baker PJ, Sha JA, McBride MW, Peng L, Payne AH, O’Shaughnessy PJ (1999) Expression of 3beta-hydroxysteroid dehydrogenase type I and type VI isoforms in the mouse testis during development. Eur J Biochem 260:911–917

    Article  PubMed  CAS  Google Scholar 

  • Beaumont HM, Mandl AM (1963) A quantitative study of primordial germ cells in the rat. J Embryol Exp Morphol 11:715–740

    PubMed  CAS  Google Scholar 

  • Bégeot M, Langlois D, Penhoat A, Saez JM (1988) Variations in guanine-binding proteins (Gs, Gi) in cultured bovine adrenal cells. Consequences on the effects of phorbol ester and angiotensin II on adrenocorticotropin-induced and cholera-toxin-induced cAMP production. Eur J Biochem 174:317–321

    Article  PubMed  Google Scholar 

  • Boitani C, Giuditta Politi M, Menna T (1993) Spermatogonial cell proliferation in organ culture of immature rat testis. Biol Reprod 48:761–767

    Article  PubMed  CAS  Google Scholar 

  • Boulogne B, Olaso R, Levacher C, Durand P, Habert R (1999) Apoptosis and mitosis in gonocytes of the rat testis during foetal and neonatal development. Int J Androl 22:356–365

    Article  PubMed  CAS  Google Scholar 

  • Boulogne B, Habert R, Levacher C (2003) Regulation of the proliferation of cocultured gonocytes and Sertoli cells by retinoids, triiodothyronine, and intracellular signaling factors: differences between fetal and neonatal cells. Mol Reprod Dev 65:194–203

    Article  PubMed  CAS  Google Scholar 

  • Buehr M, Gu S, McLaren A (1993) Mesonephric contribution to testis differentiation in the fetal mouse. Development 117:273–281

    PubMed  CAS  Google Scholar 

  • Carr FE, Chin WW (1985) Absence of detectable chorionic gonadotropin subunit messenger ribonucleic acids in the rat placenta throughout gestation. Endocrinology 116:1151–1157

    PubMed  CAS  Google Scholar 

  • Cupp A, Dufour J, Kim G, Skinner M, Kim K (1999) Action of retinoids on embryonic and early postnatal testis development. Endocrinology 140:2343–2352

    Article  PubMed  CAS  Google Scholar 

  • Delbes G, Levacher C, Pairault C, Racine C, Duquenne C, Krust A, Habert R (2004) Estrogen receptor {beta}-mediated inhibition of male germ cell line development in mice by endogenous estrogens during perinatal life. Endocrinology 145:3395–3403

    Article  PubMed  CAS  Google Scholar 

  • Gautier C, Levacher C, Saez JM, Habert R (1997) Transforming growth factor β1 inhibits steroidogenesis in dispersed fetal testicular cells in culture. Mol Cell Endocrinol 131:21–30

    Article  PubMed  CAS  Google Scholar 

  • George F, Wilson J (1994) Sex determination and differentiation. In: Knobil E, Neill J (ed) The physiology of reproduction, vol 1. Raven, New York, pp 3–28

    Google Scholar 

  • Habert R (1993) In vivo acute testicular testosterone response to injection of luteinizing hormone in the rat fetus. Acta Endocrinol 128:268–273

    PubMed  CAS  Google Scholar 

  • Habert R, Picon R (1982) Control of testicular steroidogenesis in fetal rat: effect of decapitation on testosterone and plasma luteinizing hormone-like activity. Acta Endocrinol 99:466–473

    PubMed  CAS  Google Scholar 

  • Habert R, Picon R (1984) Testosterone, dihydrotestosterone and estradiol 17β levels in maternal and fetal plasma and in fetal testes in the rat. J Steroid Biochem 21:193–198

    Article  PubMed  CAS  Google Scholar 

  • Habert R, Picon R (1990) Attempts for identification of a chorionic gonadotrophin-like bioactivity in the rat placenta which stimulates the testosterone secretion of the foetal testis in vitro. Biol Neonate 58:24–31

    Article  PubMed  CAS  Google Scholar 

  • Habert R, Devif I, Gangnerau MN, Lecerf L (1991) Ontogenesis of the in vitro response of rat testis to gonadotropin-releasing hormone. Mol Cell Endocrinol 82:199–206

    Article  PubMed  CAS  Google Scholar 

  • Habert R, Lejeune H, Saez JM (2001) Origin, differentiation and regulation of fetal and adult Leydig cells. Mol Cell Endocrinol 179:47–74

    Article  PubMed  CAS  Google Scholar 

  • Huhtaniemi I, Warren DW, Catt KJ (1984) Functional maturation of rat testis Leydig cells. Ann N Y Acad Sci 438:283–303

    Article  PubMed  CAS  Google Scholar 

  • Huhtaniemi I, Pelliniemi L (1992) Fetal Leydig cells: cellular origin, morphology, life span, and special functional features. Proc Soc Exp Biol Med 201:125–140

    PubMed  CAS  Google Scholar 

  • Hutson JC (1990) Changes in the concentration and size of testicular macrophages during development. Biol Reprod 43:885–890

    Article  PubMed  CAS  Google Scholar 

  • Johnston H, Baker PJ, Abel M, Charlton HM, Jackson G, Fleming L, Kumar TR, O’Shaughnessy PJ (2004) Regulation of Sertoli cell number and activity by follicle-stimulating hormone and androgen during postnatal development in the mouse. Endocrinology 145:318–329

    Article  PubMed  CAS  Google Scholar 

  • Jost A (1972) Données préliminaires sur les stades initiaux de la différenciation du testicule chez le rat. Arch Anat Micr Morphol Exp 61:415–438

    Google Scholar 

  • Jost A (1976) Hormonal and genetic factors affecting the development of the male genital system. Andrologia 8:17–33

    Google Scholar 

  • Jost A, Magre S (1993) Sexual differentiation. In: Thibault C, Levasseur M, Hunter RHF (ed) Reproduction in mammals and man. Ellipses, Paris, pp 197–226

    Google Scholar 

  • Kerr JB, Knell CM (1988) The fate of foetal Leydig cells during the development of foetal and postnatal rat testis. Development 103:535–544

    PubMed  CAS  Google Scholar 

  • Le Magueresse B, Pineau C, Guillou F, Jegou B (1988) Influence of germ cells upon transferrin secretion by rat Sertoli cells in vitro. J Endocrinol 118:R13–R16

    PubMed  Google Scholar 

  • Lecerf L, Rouiller-Fabre V, Levacher C, Gautier C, Saez J, Habert R (1993) Stimulatory effect of follicle-stimulating hormone on basal and luteinizing hormone-stimulated testosterone secretion by fetal rat testis in vitro. Endocrinology 133:2313–2318

    Article  PubMed  CAS  Google Scholar 

  • Li H, Kim KH (2003) Effects of mono-(2-ethylhexyl) phthalate on fetal and neonatal rat testis organ cultures. Biol Reprod 69:1964–1972

    Article  PubMed  CAS  Google Scholar 

  • Li H, Papadapoulos V, Vidic B, Dym M, Culty M (1997) Regulation of rat testis gonocyte proliferation by platelet-derived growth factor and estradiol: identification of signaling mechanisms involved. Endocrinology 138:1289–1298

    Article  PubMed  CAS  Google Scholar 

  • Livera G, Rouiller-Fabre V, Durand P, Habert R (2000) Multiple effects of retinoids on the development of Sertoli, germ and Leydig cells of fetal and neonatal rat testis in culture. Biol Reprod 62:1303–1314

    Article  PubMed  CAS  Google Scholar 

  • Livera G, Rouiller-Fabre V, Habert R (2001) Retinoid receptors involved in the effects of retinoic acid on rat testis development. Biol Reprod 2001 64:1307–1314

    Article  CAS  Google Scholar 

  • Livera G, Pairault C, Lambrot R, Lelievre-Pegorier M, Saez JM, Habert R, Rouiller-Fabre V (2004) Retinoid-sensitive steps in steroidogenesis in fetal and neonatal rat testes: in vitro and in vivo studies. Biol Reprod 70:1814–1821

    Article  PubMed  CAS  Google Scholar 

  • Magre S, Jost A (1980) The initial phases of testicular organogenesis in the rat. An electron microscopy study. Arch Anat Micr Morphol Exp 69:297–318

    CAS  Google Scholar 

  • Mannaerts B, Deleeuv R, Geelen J, Van Ravestein A, Van Wezenbeck P, Schuursa A, Kloosterboer H (1991) Comparative in vitro and in vivo studies on biological characteristics of recombinant human follicle-stimulating hormone. Endocrinology 129:2623–2630

    PubMed  CAS  Google Scholar 

  • Meinhardt A, Bacher M, Metz C, Bucala R, Wreford N, Lan H, Atkins R, Hedger M (1998) Local regulation of macrophage subsets in the adult rat testis: examination of the roles of the seminiferous tubules, testosterone, and macrophage-migration inhibitory factor. Biol Reprod 59:371–378

    Article  PubMed  CAS  Google Scholar 

  • Migrenne S, Pairault C, Racine C, Livera G, Géloso A, Habert R (2001) LH-dependent activity and LH-independent differentiation of rat fetal Leydig cells. Mol Cell Endocrinol 172:193–202

    Article  PubMed  CAS  Google Scholar 

  • Migrenne S, Racine C, Guillou F, Habert R (2003) Pituitary hormones inhibit the function and differentiation of fetal Sertoli cells. Endocrinology 144:2617–2622

    Article  PubMed  CAS  Google Scholar 

  • Nagano R, Tabata S, Nakanishi Y, Ohsako S, Kurohmaru M, Hayashi Y (2000) Reproliferation and relocation of mouse male germ cells (gonocytes) during prespermatogenesis. Anat Rec 258:210–220

    PubMed  CAS  Google Scholar 

  • Okker-Reitsma G, Xilson G (1980) Evidence for a biphasic pattern in gonadotrophin secretion by the mouse placenta in vitro. J Steroid Biochem 12:97–99

    Article  PubMed  CAS  Google Scholar 

  • Olaso R, Habert R (2000) Genetic and cellular analysis of male germ cell development. J Androl 21:497–511

    PubMed  CAS  Google Scholar 

  • Olaso R, Pairault C, Boulogne B, Durand P, Habert R (1998) Transforming growth factor β1 and β2 reduce the number of gonocytes by increasing apoptosis. Endocrinology 139:733–740

    Article  PubMed  CAS  Google Scholar 

  • Orth JM (1982) Proliferation of Sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study. Anat Rec 203:485–492

    Article  PubMed  CAS  Google Scholar 

  • Orth J (1984) The role of follicle-stimulating hormone in controlling Sertoli cell proliferation in testes of fetal rats. Endocrinology 115:1248–1255

    Article  PubMed  CAS  Google Scholar 

  • O’Shaughnessy P, Baker U, Sohnius U, Haavisto A-M, Charlton H, Huhtaniemi I (1998) Fetal development of Leydig cell activity in the mouse is independent of pituitary gonadotroph function. Endocrinology 139:1141–1146

    Article  PubMed  CAS  Google Scholar 

  • Paz GF, Thliveris JA, Winter JS, Reyes IF, Faiman C (1980) Hormonal control of testosterone secretion by the fetal rat testis in organ culture. Biol Reprod 23:1087–1095

    Article  PubMed  CAS  Google Scholar 

  • Pelliniemi LJ, Fröjdman K, Paranko J (1993) Embryological and prenatal development and function of Sertoli cells. In: Russell LD, Griswold MD (ed) The Sertoli cell. Cache Rivers, Vienna, Ill., pp 88–113

    Google Scholar 

  • Pointis G, Latreille MT, Cedard L (1980) Gonado-pituitary relationships in the fetal mouse at various times during sexual differentiation. J Endocrinol 86:483–488

    Article  PubMed  CAS  Google Scholar 

  • Pointis G, Mahoudeau JA (1974) Testosterone production by embryonic testis of mouse in organ culture. C R Acad Sci D 279:1197–1200

    CAS  Google Scholar 

  • Rao B, Pointis G, Cedard L (1982) Presence of a chorionic gonadotrophin-like factor in mouse placental cultures during the second half of gestation. J Reprod Fertil 66:341–348

    Article  PubMed  CAS  Google Scholar 

  • Ross AJ, Capel B (2005) Signaling at the crossroads of gonad development. Trends Endocrinol Metab 16:19–25

    Article  PubMed  CAS  Google Scholar 

  • Rouiller-Fabre V, Lecerf L, Gautier C, Saez JM, Habert R (1998) Expression and effect of insulin-like growth factor I on rat fetal Leydig cell function and differentiation. Endocrinology 139:2926–2934

    Article  PubMed  CAS  Google Scholar 

  • Saez JM (1994) Leydig cells: endocrine, paracrine and autocrine regulation. Endocr Rev 15:574–626

    Article  PubMed  CAS  Google Scholar 

  • Schlatt S, Zhengwei Y, Meehan T, Kretser DM de, Loveland KL (1999) Application of morphometric techniques to postnatal rat testes in organ culture: insights into testis growth. Cell Tissue Res 298:335–343

    Article  PubMed  CAS  Google Scholar 

  • Sharpe RM (2004) Sertoli cell endocrinology and signal transduction: androgen regulation. In: Skinner MK, Griswold MD (ed) Sertoli cell biology, vol 1. Academic Press, San Diego, pp 199–216

    Google Scholar 

  • Sharpe RM (2005) Phthalate exposure during pregnancy and lower anogenital index in boys: wider implications for the general population? Environ Health Perspect 113:A504–A505

    Article  PubMed  Google Scholar 

  • Sharpe RM, Irvine DS (2004) How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health? BMJ 328:447–451

    Article  PubMed  CAS  Google Scholar 

  • Sharpe RM, Skakkebaek NE (1993) Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 341:1392–1395

    Article  PubMed  CAS  Google Scholar 

  • Tapanainen J, Kuopio T, Pelliniemi LJ, Huhtaniemi I (1984) Rat testicular endogenous steroids and number of Leydig cells between the fetal period and sexual maturity. Biol Reprod 31:1027–1035

    Article  PubMed  CAS  Google Scholar 

  • Van Dissel-Emiliani FMF, De Boer-Brouwer M, Spek ER, Van Der Donk JA, De Rooij DG (1993) Survival and proliferation of rat gonocytes in vitro. Cell Tissue Res 273:141–147

    Article  PubMed  Google Scholar 

  • Vergouwen RP, Jacobs SG, Huiskamp R, Davids JA, Rooij DG de (1991) Proliferative activity of gonocytes, Sertoli cells and interstitial cells during testicular development in mice. J Reprod Fertil 93:233–243

    Article  PubMed  CAS  Google Scholar 

  • Vergouwen RPFA, Huiskamp R, Bas RJ, Roepers-Gajadien HL, Davids JAG, De Rooij DG (1993) Postnatal development of testicular cell populations in mice. J Reprod Fert 99:479–485

    Article  CAS  Google Scholar 

  • Vigier B, Tran D, Du Mesnil du Buisson F, Heyman Y, Josso N (1983) Use of monoclonal antibody techniques to study the ontogeny of bovine anti-Müllerian hormone. J Reprod Fert 69:207–214

    Article  CAS  Google Scholar 

  • Warren DW, Haltmeyer GC, Eik-Nes KB (1973) Testosterone in the fetal rat testis. Biol Reprod 8:560–565

    PubMed  CAS  Google Scholar 

  • Weniger JP (1986) Steroid secretion by foetal mammal gonads and its regulation by gonadotrophins. Reprod Nutr Dev 26:921–932

    Article  PubMed  CAS  Google Scholar 

  • Wolff E (1952) Sur la différenciation sexuelle des gonades de souris explantées in vitro. C R Acad Sci III 234:1712–1714

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Levacher, C. Racine and E. Moreau for profitable discussions, to P. Flament for animal care, to C. Duquenne for expert technical assistance with the testosterone RIA and to A. Gouret for skillful secretarial assistance. We also thank G. Defaye, A. Payne and the late J.M. Saez for providing antibodies and F. Guillou for transferrin RIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Livera.

Additional information

This work was supported by the Université Paris 7, Commissariat à l’Energie Atomique (CEA) and the Institut National de la Santé et de la Recherche Médicale (INSERM) and by grant Agence Francaise de Sécurité Sanitaire et Environnementale (AFSSE). G. Delbes is the recipient of a fellowship from the Ministère de la Recherche et de la Technologie and from the Association pour la Recherche contre le Cancer.

This work is dedicated to the memory of José Maria Saez in recognition of his helpful and constant encouragement and discussions over the last decade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livera, G., Delbes, G., Pairault, C. et al. Organotypic culture, a powerful model for studying rat and mouse fetal testis development. Cell Tissue Res 324, 507–521 (2006). https://doi.org/10.1007/s00441-006-0167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0167-7

Keywords

Navigation