Skip to main content

In Silico Studies Applied to Natural Products with Potential Activity Against Alzheimer’s Disease

  • Protocol
  • First Online:
Computational Modeling of Drugs Against Alzheimer’s Disease

Part of the book series: Neuromethods ((NM,volume 132))

Abstract

The neurodegenerative disease, named Alzheimer’s disease (AD) after its discoverer, is today considered the most common form of dementia. AD represents 60–70% of dementia cases in patients of 65 years of age or older. It leads to complete dementia and death. AD’s causes are unknown, yet it evidences mutations in several genes, factors such as the amyloid precursor protein (APP), presenilins (PS1, PS2), apolipoprotein E, etc. In silico methods or CADD (computer-aided drug design) studies are increasingly being used in both industry and universities. They involve an understanding of the molecular interactions from both qualitative and quantitative points of view. These methods generate and manipulate three-dimensional (3D) molecular structures; calculate descriptors and the independent molecular properties, followed by model constructions; and employ other tools that encompass computational drug research. Analysis of the molecular structure of a given system allows relevant information to be extracted and to predict the potential of bioactive compounds.

We found mainly research on the inhibitory activity of flavonoids, alkaloids, and xanthones in key enzymes of the biochemical changes that occur in AD: acetylcholinesterase (AChE; EC 3.1.1.7), butyrylcholinesterase (BChE; EC 3.1.1.8), and monoamine oxidase (MAO; EC 1.4.3.4). Recent research has used QSAR and docking for selection of multifunctional compounds that are drugs on multitargets. The multitarget QSAR model can simultaneously predict activity or classify compounds as actives or inactives against different targets, such as the proteins (amyloid-A4 protein (ABPP), glycogen synthase kinase-3 alpha, glycogen synthase kinase-3 beta (GSK-3β), monoamine oxidase B (MAO-B), and presenilin-1 (PSN-1)).

This chapter will discuss several in silico studies reported considering the complexity of this neurodegenerative disease, the possible multifactorial origin, and the pharmacological potential of natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clement JA (2014) Recent progress in medicinal natural products drug discovery. Curr Top Med Chem 14:2758

    Article  CAS  Google Scholar 

  2. Wang BC, Deng J, Gao YM, Zhu LC, He R, Xu YQ (2011) The screening toolbox of bioactive substances from natural products: a review. Fitoterapia 82:1141–1151

    Article  CAS  PubMed  Google Scholar 

  3. Kennedy DA, Hart J, Seely D (2009) Cost effectiveness of natural health products: a systematic review of randomized clinical trials. Evid-based Complement Altern Med 6:297–304

    Article  Google Scholar 

  4. Leitao A, Montanari CA, Donnici CL (2000) The use of chemometric methods on combinatorial chemistry. Quim Nova 23:178–184

    Article  CAS  Google Scholar 

  5. Sabuncu MR, Desikan RS, Sepulcre J, BTT Y, Liu H, Schhmansky NJ, Buckner RL, Sperling RA, Fischl B (2011) The dynamics of cortical and hippocampal atrophy in Alzheimer disease. Arch Neurol 68:1040–1048

    Article  PubMed  PubMed Central  Google Scholar 

  6. Byun CJ, Seo J, Jo SA, Park YJ, Klug M, Rehli M, Park M-H, Jo I (2012) DNA methylation of the 50-untranslated region at +298 and +351 represses BACE1 expression in mouse BV-2 microglial cells. BiochemBioph Res Co 417:387–392

    Article  CAS  Google Scholar 

  7. Hamdan AC (2008) Avaliação neuropsicológica na doença de Alzheimer e no comprometimento cognitivo leve. Psicol Argum 26:183–192

    Google Scholar 

  8. Dhikav V, Anand K (2011) Potential predictors of hippocampal atrophy in Alzheimer’s disease. Drugs Aging 28:1–11

    Article  CAS  PubMed  Google Scholar 

  9. Pohanka M (2015) Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chem Pap 69(1):4–16

    Article  CAS  Google Scholar 

  10. Ferrer I (2012) Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia. ProgNeurobiol 97:38–51

    Google Scholar 

  11. Mecocci P, Polidori MC (2012) Antioxidant clinical trials in mild cognitive impairment and Alzheimer’s disease. BiochimBiophActa 1822:631–638

    CAS  Google Scholar 

  12. Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurosci 7:137–152

    Google Scholar 

  13. Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67(2):195–203

    Article  CAS  PubMed  Google Scholar 

  14. Gold BT (2015) Lifelong bilingualism and neural reserve against Alzheimer’s disease: a review of findings and potential mechanisms. Behav Brain Res 281:9–15

    Article  PubMed  Google Scholar 

  15. Nussbaum RL, Ellis CE (2003) Alzheimer’s disease and Parkinson’s disease. N Engl J Med 348:1356–1364

    Article  CAS  PubMed  Google Scholar 

  16. Akagi M, Matsui N, Akae H, Hirashima N, Fukuishi N, Fukuyama Y, Akagi R (2015) Nonpeptide neurotrophic agents useful in the treatment of neurodegenerative diseases such as Alzheimer’s disease. J Pharmacol Sci 127(2):155–163

    Article  CAS  PubMed  Google Scholar 

  17. Sarvaiya J, Agrawal YK (2015) Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int J BiolMacromol 72:454–465

    Article  CAS  Google Scholar 

  18. Catala-Lopez F, Tabares-Seisdedos R (2015) Alzheimer’s disease and cancer: the need of putting research into context with previous published systematic reviews. J Cancer Res Clin Oncol 141(3):569–570

    Article  PubMed  Google Scholar 

  19. Choi DY, Choi H (2015) Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer’s disease, Parkinson’s disease and ischemic brain stroke: their molecular targets and action mechanisms. Arch Pharm Res 38(2):139–170

    Article  CAS  PubMed  Google Scholar 

  20. Khan I, Samad A, Khan AZ, Habtemariam S, Badshah A, Abdullah SM, Ullah N, Khan A, Zia-Ul-Haq M (2013) Molecular interactions of 4-acetoxy-plakinamine B with peripheral anionic and other catalytic subsites of the aromatic gorge of acetylcholinesterase: computational and structural insights. Pharm Biol 51(6):722–727

    Article  CAS  PubMed  Google Scholar 

  21. Richard T, Papastamoulis Y, Waffo-Teguo P, Monti JP (2013) 3D NMR structure of a complex between the amyloid beta peptide (1-40) and the polyphenol epsilon-viniferin glucoside: implications in Alzheimer’s disease. Biochim Biophys Acta-Gen Subj 1830(11):5068–5074

    Article  CAS  Google Scholar 

  22. Crichton GE, Bryan J, Murphy KJ (2013) Dietary antioxidants, cognitive function and dementia - a systematic review. Plant Food Hum Nutr 68(3):279–292

    Article  CAS  Google Scholar 

  23. Devore EE, Grodstein F, van Rooij FJA, Hofman A, Stampfer MJ, Witteman JCM, Breteler MMB (2010) Dietary antioxidants and long-term Risk of dementia. Arch Neurol 67(7):819–825

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rodacka A, Strumillo J, Serafin E, Puchala M (2014) Effect of resveratrol and Tiron on the inactivation of glyceraldehyde-3-phosphate dehydrogenase induced by superoxide anion radical. Curr Med Chem 21(8):1061–1069

    Article  CAS  PubMed  Google Scholar 

  25. Lakey-Beitia J, Berrocal R, Rao KS, Durant AA (2015) Polyphenols as therapeutic molecules in Alzheimer’s disease through modulating amyloid pathways. Mol Neurobiol 51(2):466–479

    Article  CAS  PubMed  Google Scholar 

  26. Ramesh BN, Indi SS, Rao KSJ (2010) Anti-amyloidogenic property of leaf aqueous extract of Caesalpinia Crista. Neurosci Lett 475(2):110–114

    Article  CAS  PubMed  Google Scholar 

  27. Berrocal R, Vasudevaraju P, Indi SS, Rao K, Rao KS (2014) In vitro evidence that an aqueous extract of Centella Asiatica modulates alpha-Synuclein aggregation dynamics. J Alzheimers Dis 39(2):457–465

    PubMed  Google Scholar 

  28. Perez-Jimenez J, Neveu V, Vos F, Scalbert A (2010) Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: an application of the phenol-explorer database. J Agric Food Chem 58(8):4959–4969

    Article  CAS  PubMed  Google Scholar 

  29. Mora-Pale M, Sanchez-Rodriguez SP, Linhardt RJ, Dordick JS, Koffas MAG (2013) Metabolic engineering and in vitro biosynthesis of phytochemicals and non-natural analogues. Plant Sci 210:10–24

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Xia Z, Xu JR, Wang YX, Hou LN, Qiu Y, Chen HZ (2012) α-Mangostin, a polyphenolic xanthone derivative from mangosteen, attenuates β-amyloid oligomers-induced neurotoxicity by inhibiting amyloid aggregation. Neuropharmacology 62(2):871–881

    Article  CAS  PubMed  Google Scholar 

  31. Morelli CF, Biagiotti M, Pappalardo VM, Rabuffetti M, Speranz G (2015) Chemistry of alpha-mangostin. Studies on the semisynthesis of minor xanthones from Garcinia Mangostana. Nat Prod Res 29(8):750–755

    Article  CAS  PubMed  Google Scholar 

  32. Ibrahim MY, Hashim NM, Mohan S, Abdulla MA, Abdelwahab SI, Arbab IA, Yahayu M, Ali LZ, Ishag OE (2015) α-Mangostin from Cratoxylum arborescens: an in vitro and in vivo toxicological evaluation. Arab J Chem 8(1):129–137

    Article  CAS  Google Scholar 

  33. Chaijaroenkul W, Na-Bangchang K (2015) The in vitro antimalarial interaction of 9-hydroxycalabaxanthone and alpha-mangostin with mefloquine/artesunate. Acta Parasitol 60(1):105–111

    CAS  Google Scholar 

  34. Buravlev EV, Shevchenko OG, Kutchin AV (2015) Synthesis and membrane-protective activity of novel derivatives of alpha-mangostin at the C-4 position. Bioorg Med Chem Lett 25(4):826–829

    Article  CAS  PubMed  Google Scholar 

  35. Koh JJ, Lin SM, Aung TT, Lim F, Zou HX, Bai Y, Li JG, Lin HF, Pang LM, Koh WL, Salleh SM, Lakshminarayanan R, Zhou L, Qiu SX, Pervushin K, Verma C, Tan DTH, Cao DR, Liu SP, Beuerman RW (2015) Amino acid modified Xanthone derivatives: novel, highly promising membrane-active antimicrobials for multidrug-resistant gram-positive bacterial infections. J Med Chem 58(2):739–752

    Article  CAS  PubMed  Google Scholar 

  36. Choi M, Kim YM, Lee S, Chin YW, Lee C (2014) Mangosteen xanthones suppress hepatitis C virus genome replication. Virus Genes 49(2):208–222

    Article  CAS  PubMed  Google Scholar 

  37. Ahmad MZ, Ahmad J, Amin S, Rahman M, Anwar M, Mallick N, Ahmad FJ, Rahman Z, Kamal MA, Akhter S (2014) Role of Nanomedicines in delivery of anti-acetylcholinesterase compounds to the brain in Alzheimer’s disease. CNS Neurol Disord-Drug Targets 13(8):1315–1324

    Article  CAS  PubMed  Google Scholar 

  38. Moretti G, Mosc L (2013) Mixture useful for treatment of diseases e.g. inflammatory, diabetic, cardiac, neurodegenerative, atherosclerotic pathologies, viral, metabolic, cardiovascular diseases comprises resveratrol; and carboxymethylglucan. EP2674155-A1; IT1412486-B, EP2674155-A1 18 Dec 2013 A61K-031/05 201404

    Google Scholar 

  39. Kumar P, Choonara YE, Modi G, Naidoo D, Pillay V (2014) Cur(Que)min: a neuroactive permutation of Curcumin and Quercetin for treating spinal cord injury. Med Hypotheses 82(4):437–441

    Article  CAS  PubMed  Google Scholar 

  40. Shen BJ, Truong J, Helliwell R, Govindaraghavan S, Sucher NJ (2013) An in vitro study of neuroprotective properties of traditional Chinese herbal medicines thought to promote healthy ageing and longevity. BMC Complement Altern Med 13:8

    Article  Google Scholar 

  41. Madeswaran A, Umamaheswari M, Asokkumar K, Sivashanmugam T, Subhadradevi V, Jagannath P (2013) Computational drug discovery of potential TAU protein kinase I inhibitors using in silico docking studies. J Pharmacol 8(2):131–135

    Google Scholar 

  42. Odemuyiwa SO, Ilarraza R, Davoine F, Logan MR, Shayeganpour A, Wu YQ, Majaesic C, Adamko DJ, Moqbel R, Lacy P (2015) Cyclin-dependent kinase 5 regulates degranulation in human eosinophils. Immunology 144(4):641–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rouget R, Sharma G, LeBlanc AC (2015) Cyclin-dependent kinase 5 phosphorylation of familial prion protein mutants exacerbates conversion into amyloid structure. J Biol Chem 290(9):5759–5771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rudenko A, Seo J, Hu J, Su SC, de Anda FC, Durak O, Ericsson M, Carlen M, Tsai LH (2015) Loss of Cyclin-dependent kinase 5 from Parvalbumin interneurons leads to Hyperinhibition, decreased anxiety, and memory impairment. J Neurosci 35(6):2372–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shrestha S, Natarajan S, Park JH, Lee DY, Cho JG, Kim GS, Jeon YJ, Yeon SW, Yang DC, Baek NI (2013) Potential neuroprotective flavonoid-based inhibitors of CDK5/p25 from Rhus Parviflora. Bioorg Med Chem Lett 23(18):5150–5154

    Article  CAS  PubMed  Google Scholar 

  46. Yang Z, Song Z, Xue W, Sheng J, Shu Z, Shi Y, Lang J, Yao X (2014) Synthesis and structure–activity relationship of nuciferine derivatives as potential acetylcholinesterase inhibitors. Med Chem Res 23:3178–3186

    Article  CAS  Google Scholar 

  47. Yang ZD, Zhang X, Du J, Ma ZJ, Guo F, Li S, Yao XJ (2012) An aporphine alkaloid from Nelumbo Nucifera as an acetylcholinesterase inhibitor and the primary investigation for structure-activity correlations. Nat Prod Res 26(5):387–392

    Article  CAS  PubMed  Google Scholar 

  48. Chatonnet A, Lockridge O (1989) Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 260:625–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao D, Zhan C-G (2005) Modeling effects of oxyanion hole on the Ester hydrolysis catalyzed by human Cholinesterases. J PhysChem 109(B):23070–23076

    CAS  Google Scholar 

  50. Bishara D, Harwood D (2014) Safe prescribing of physical health medication in patients with dementia. Int J Geriatr Psychiatry 29(12):1230–1241

    Article  PubMed  Google Scholar 

  51. Singh DB, Gupta MK, Kesharwani RK, Sagar M, Dwivedi S, Misra K (2014) Molecular drug targets and therapies for Alzheimer’s disease. Transl Neurosci 5(3):203–217

    Article  Google Scholar 

  52. Wong KY, Mercader AG, Saavedra LM, Honarparvar B, Romanelli GP, Duchowicz PR (2014) QSAR analysis on tacrine-related acetylcholinesterase inhibitors. J Biomed Sci 21:8

    Article  CAS  Google Scholar 

  53. Li SY, Wang XB, Xie SS, Jiang N, Wang KDG, Yao HQ, Sun HB, Kong LY (2013) Multifunctional tacrine flavonoid hybrids with cholinergic, beta-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur J Med Chem 69:632–646

    Article  CAS  PubMed  Google Scholar 

  54. Qu J, Zhou Q, Du Y, Zhang W, Bai M, Zhang Z, Xi Y, Li ZY, Miao JT (2014) Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion. Br J Pharmacol 171(15):3702–3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grosso C, Valentao P, Ferreres F, Andrade PB (2013) The use of flavonoids in central nervous system disorders. Curr Med Chem 20(37):4694–4719

    Article  CAS  PubMed  Google Scholar 

  56. Henry MS, Passmore AP, Todd S, McGuinness B, Craig D, Johnston JA (2013) The development of effective biomarkers for Alzheimer’s disease: a review. Int J Geriatr Psychopharmacol 28:331–340

    Article  Google Scholar 

  57. Holmes C (2013) Review: systemic inflammation and Alzheimer's disease. Neuropath ApplNeuro 39:51–68

    Article  CAS  Google Scholar 

  58. Hyde C, Peters J, Bond M et al (2013) Evolution of the evidence on the effectiveness and cost-effectiveness of acetylcholinesterase inhibitors and memantine for Alzheimer's disease: systematic review and economic model. Age Ageing 42:14–20

    Article  PubMed  Google Scholar 

  59. Anand P, Singh B (2013) A review on cholinesterase inhibitors for Alzheimer's disease. Arch Pharm Res 36:375–399

    Article  CAS  PubMed  Google Scholar 

  60. Stuble RG, Ala T, Patrylo PR, Brewer GJ, Yan X-X (2010) Is brain amyloid production a cause or a result of dementia of the Alzheimer type? J Alzheimers Dis 22:393–399

    Article  CAS  Google Scholar 

  61. Luo W, Su YB, Hong C, Tian RG, Su LP, Wang YQ, Li Y, Yue JJ, Wang CJ (2013) Design, synthesis and evaluation of novel 4-dimethylamine flavonoid derivatives as potential multi-functional anti-Alzheimer agents. Bioorg Med Chem 21(23):7275–7282

    Article  CAS  PubMed  Google Scholar 

  62. Goyal M, Grover S, Dhanjal JK, Goyal S, Tyagi C, Grover A (2014) Molecular modelling studies on flavonoid derivatives as dual site inhibitors of human acetyl cholinesterase using 3D-QSAR, pharmacophore and high throughput screening approaches. Med Chem Res 23(4):2122–2132

    Article  CAS  Google Scholar 

  63. Chakraborty S, Basu S (2014) Insight into the anti-amyloidogenic activity of polyphenols and its application in virtual screening of phytochemical database. Med Chem Res 23(12):5141–5148

    Article  CAS  Google Scholar 

  64. Lemkul JA, Bevan DR (2012) Morin inhibits the early stages of amyloid beta-peptide aggregation by altering tertiary and quaternary interactions to produce off-pathway structures. Biochemist 51(30):5990–6009

    Article  CAS  Google Scholar 

  65. Lemkul JA, Bevan DR (2010) Destabilizing Alzheimer's a beta(42) Protofibrils with Morin: mechanistic insights from molecular dynamics simulations. Biochemist 49(18):3935–3946

    Article  CAS  Google Scholar 

  66. Remya C, Dileep KV, Tintu I, Variyar EJ, Sadasivan C (2012) Design of potent inhibitors of acetylcholinesterase using morin as the starting compound. Front Life Sci 6(3–4):107–117

    Article  CAS  Google Scholar 

  67. Duan S, Guan X, Lin R et al (2015) Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of Alzheimer’s disease. Neurobiol Aging 36:1792–1807

    Article  CAS  PubMed  Google Scholar 

  68. Boratynski PJ (2015) Dimeric cinchona alkaloids. Mol Divers 19(2):385–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kong DG, Zhao Y, Li GH, Chen BJ, Wang XN, Zhou HL, Lou HX, Ren DM, Shen T (2015) The genus Litsea in traditional Chinese medicine: an ethnomedical, phytochemical and pharmacological review. J Ethnopharmacol 164:256–264

    Article  CAS  PubMed  Google Scholar 

  70. Vale VV, Vilhena TC, Trindade RCS, Ferreira MRC, Percario S, Soares LF, Pereira WLA, Brandao GC, Oliveira AB, Dolabela MF, De Vasconcelos F (2015) Anti-malarial activity and toxicity assessment of Himatanthus articulatus, a plant used to treat malaria in the Braz Amazon. Malar J 14:132. doi:10.1186/s12936-015-0643-1

    Article  PubMed  PubMed Central  Google Scholar 

  71. Larsson S, Ronsted N (2014) Reviewing Colchicaceae alkaloids - perspectives of evolution on medicinal chemistry. Curr Top Med Chem 14(2):274–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiang WW, Su J, Wu XD, He J, Peng LY, Cheng X, Zhao QS (2015) Geissoschizine methyl ether N- oxide, a new alkaloid with antiacetylcholinesterase activity from Uncaria rhynchophylla. Nat Prod Res 29(9):842–847

    Article  CAS  PubMed  Google Scholar 

  73. Liu W, Shi XY, Yang YD, Cheng XM, Liu Q, Han H, Yang BH, He CY, Wang YL, Jiang B, Wang ZT, Wang CH (2015) In vitro and in vivo metabolism and inhibitory activities of Vasicine, a potent acetylcholinesterase and Butyrylcholinesterase inhibitor. PLoS One 10(4):35

    Google Scholar 

  74. Liew SY, Khaw KY, Murugaiyah V, Looi CY, Wong YL, Mustafa MR, Litaudon M, Awang K (2015) Natural indole butyrylcholinesterase inhibitors from Nauclea officinalis. Phytomedicine 22(1):45–48

    Article  CAS  PubMed  Google Scholar 

  75. Shaikh S, Zainab T, Shakil S, Rizvi SMD (2015) A neuroinformatics study to compare inhibition efficiency of three natural ligands (Fawcettimine, Cernuine and Lycodine) against human brain acetylcholinesterase. Netw-Comput Neural Syst 26(1):25–34

    Google Scholar 

  76. Konrath EL, Passos CD, Klein LC, Henriques AT (2013) Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer's disease. J Pharm Pharmacol 65(12):1701–1725

    Article  CAS  PubMed  Google Scholar 

  77. Huang HJ, Lee CC, Chen CYC (2014) Lead discovery for Alzheimer's disease related target protein RbAp48 from traditional Chinese medicine. Biomed Res Int 2014:764946

    PubMed  PubMed Central  Google Scholar 

  78. Makowska J, Szczesny D, Lichucka A, Gieldon A, Chmurzynski L, Kaliszan R (2014) Preliminary studies on trigonelline as potential anti-Alzheimer disease agent: determination by hydrophilic interaction liquid chromatography and modeling of interactions with beta-amyloid. J Chromatogr B 968:101–104

    Article  CAS  Google Scholar 

  79. Cortes N, Alvarez R, Osorio EH, Alzate F, Berkov S, Osorio E (2015) Alkaloid metabolite profiles by GC/MS and acetylcholinesterase inhibitory activities with binding-mode predictions of five Amaryllidaceae plants. J Pharm Biomed Anal 102:222–228

    Article  CAS  PubMed  Google Scholar 

  80. Cahlikova L, Valterova I, Macakova K, Opletal L (2011) Analysis of Amaryllidaceae alkaloids from Zephyranthes Grandiflora by GC/MS and their cholinesterase activity. Revista Brasileira De Farmacognosia-Brazilian J Pharmacog 21(4):575–580

    Article  CAS  Google Scholar 

  81. Kulhankova A, Cahlikova L, Novak Z, Macakova K, Kunes J, Opletal L (2013) Alkaloids from Zephyranthes Robusta baker and their acetylcholinesterase- and Butyrylcholinesterase-inhibitory activity. Chem Biodivers 10(6):1120–1127

    Article  CAS  PubMed  Google Scholar 

  82. Larsen MM, Adsersen A, Davis AP, Lledo MD, Jager AK, Ronsted N (2010) Using a phylogenetic approach to selection of target plants in drug discovery of acetylcholinesterase inhibiting alkaloids in Amaryllidaceae tribe Galantheae. Biochem Syst Ecol 38(5):1026–1034

    Article  CAS  Google Scholar 

  83. Jahn S, Seiwert B, Kretzing S, Abraham G, Regenthal R, Karst U (2012) Metabolic studies of the amaryllidaceous alkaloids galantamine and lycorine based on electrochemical simulation in addition to in vivo and in vitro models. Anal ChimActa 756:60–72

    Article  CAS  Google Scholar 

  84. Sharma V, Hussain S, Bakshi M, Bhat N, Saxena AK (2014) In vitro cytotoxic activity of leaves extracts of Holarrhena Antidysenterica against some human cancer cell lines. Indian J Biochem Biophys 51(1):46–51

    CAS  PubMed  Google Scholar 

  85. Chusri S, Na-Phatthalung P, Siriyong T, Paosen S, Voravuthikunchai SP (2014) Holarrhena Antidysenterica as a resistance modifying agent against Acinetobacter Baumannii: its effects on bacterial outer membrane permeability and efflux pumps. Microbiol Res 169(5–6):417–424

    Article  CAS  PubMed  Google Scholar 

  86. Dua VK, Verma G, Singh B, Rajan A, Bagai U, Agarwal DD, Gupta NC, Kumar S, Rastogi A (2013) Anti-malarial property of steroidal alkaloid conessine isolated from the bark of Holarrhena Antidysenterica. Malar J 12:6

    Article  CAS  Google Scholar 

  87. Kadir MF, Bin Sayeed MS, Mia MMK (2013) Ethnopharmacological survey of medicinal plants used by traditional healers in Bangladesh for gastrointestinal disorders. J Ethnopharmacol 147(1):148–156

    Article  PubMed  Google Scholar 

  88. Yang ZD, Duan DZ, Xue WW, Yao XJ, Li S (2012) Steroidal alkaloids from Holarrhena Antidysenterica as acetylcholinesterase inhibitors and the investigation for structure-activity relationships. Life Sci 90(23–24):929–933

    Article  CAS  PubMed  Google Scholar 

  89. Plaschke K, Muller AK, Kopitz J (2014) Surgery-induced changes in rat IL-1 beta and acetylcholine metabolism: role of physostigmine. Clin Exp Pharmacol Physiol 41(9):663–670

    CAS  PubMed  Google Scholar 

  90. Killi UK, Wsol V, Soukup O, Kuca K, Winder M, Tobin G (2014) In vitro functional interactions of acetylcholine esterase inhibitors and muscarinic receptor antagonists in the urinary bladder of the rat. Clin Exp Pharmacol Physiol 41(2):139–146

    Article  CAS  PubMed  Google Scholar 

  91. Yokota SI, Nakamura K, Ando M, Kamei H, Hakuno F, Takahashi SI, Shibata S (2014) Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver. FEBS Open Bio 4:905–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shaikh S, Verma A, Siddiqui S, Ahmad SS, Rizvi SMD, Shakil S, Biswas D, Singh D, Siddiqui MH, Shakil S, Tabrez S, Kamal MA (2014) Current acetylcholinesterase-inhibitors: a Neuroinformatics perspective. CNS Neurol Disord-Drug Targets 13(3):391–401

    Article  CAS  PubMed  Google Scholar 

  93. Ul-Haq Z, Mahmood U, Jehangir B (2009) Ligand-based 3D-QSAR studies of Physostigmine analogues as acetylcholinesterase inhibitors. ChemBiol Drug Des 74(6):571–581

    Article  CAS  Google Scholar 

  94. Amat-ur-Rasool H, Ahmed M (2015) Designing second generation anti-Alzheimer compounds as inhibitors of human acetylcholinesterase: computational screening of synthetic molecules and dietary phytochemicals. PLoS One 10(9):e0136509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Scotti L, Scotti MT, Ishiki H, Junior F, dos Santos PF, Tavares JF, da Silva MS (2014) Prediction of anticancer activity of Diterpenes isolated from the Paraiban Flora through a PLS model and molecular surfaces. Nat Prod Commun 9(5):609–612

    CAS  PubMed  Google Scholar 

  96. Scotti L, Tavares JF, da Silva MS, Falcao EV, de Morais e Silva L, da Silva Soares GC, Scotti MT (2012) Chemotaxonomy of three genera of the Annonaceae Family using self-organizing maps and C-13 Nmr data of Diterpenes. Quim Nova 35(11):2146–2152

    Article  CAS  Google Scholar 

  97. Scotti MT, Fernandes MB, Ferreira MJP, Emerenciano VP (2007) Quantitative structure-activity relationship of sesquiterpene lactones with cytotoxic activity. Bioorg Med Chem 15(8):2927–2934

    Article  CAS  PubMed  Google Scholar 

  98. Scotti MT, Emerenciano V, Ferreira MJP, Scotti L, Stefani R, da Silva MS, Mendonca FJB (2012) Self-organizing maps of molecular descriptors for Sesquiterpene lactones and their application to the chemotaxonomy of the Asteraceae Family. Molecules 17(4):4684–4702

    Article  CAS  PubMed  Google Scholar 

  99. Galipoglu M, Erdal MS, Gungor S (2015) Biopolymer-based transdermal films of donepezil as an alternative delivery approach in Alzheimer's disease treatment. AAPS PharmSciTech 16(2):284–292

    Article  CAS  PubMed  Google Scholar 

  100. Guo QQ, Ma XJ, Wei SG, Qiu DY, Wilson IW, Wu P, Tang Q, Liu LJ, Dong SK, Zu W (2014) De novo transcriptome sequencing and digital gene expression analysis predict biosynthetic pathway of rhynchophylline and isorhynchophylline from Uncaria rhynchophylla, a non-model plant with potent anti-alzheimer's properties. BMC Genomics 15:16

    Article  Google Scholar 

  101. Xie HY, Wang JR, Yau LF, Liu Y, Liu L, Han QB, Zhao ZZ, Jiang ZH (2014) Quantitative analysis of the flavonoid glycosides and Terpene Trilactones in the extract of Ginkgo Biloba and evaluation of their inhibitory activity towards fibril formation of beta-amyloid peptide. Molecules 19(4):4466–4478

    Article  PubMed  CAS  Google Scholar 

  102. Yin Y, Zhang Y, Li P, Ma H, Zhang X, Pan G, Wu D, Shen B (2014) Pharmaceutical composition useful for treating Alzheimer's syndrome, comprises Lycium barbarum polysaccharide-III, medlar polysaccharide-IV, resveratrol, terpene-3-beta-alcohol, Astragalus polysaccharide A2 and motherwort saponin A. CN103751207-A, CN103751207-A 30 Apr 2014 A61K-031/715 201448

    Google Scholar 

  103. Bidon-Chanal A, Fuertes A, Alonso D, Perez DI, Martinez A, Luque FJ, Medina M (2013) Evidence for a new binding mode to GSK-3: allosteric regulation by the marine compound palinurin. Eur J Med Chem 60:479–489

    Article  CAS  PubMed  Google Scholar 

  104. Sivaprakasam P, Han X, Civiello RL, Jacutin-Porte S, Kish K, Pokross M, Lewis HA, Ahmed N, Szapiel N, Newitt JA, Baldwin ET, Xiao H, Krause CM, Park H, Nophsker M, Lippy JS, Burton CR, Langley DR, Macor JE, Dubowchik GM (2015) Discovery of new acylaminopyridines as GSK-3 inhibitors by a structure guided in-depth exploration of chemical space around a pyrrolopyridinone core. Bioorg Med Chem Lett 25(9):1856–1863

    Article  CAS  PubMed  Google Scholar 

  105. Ye Q, Mao WL, Zhou YB, Xu L, Li Q, Gao YX, Wang J, Li CH, Xu YZ, Xu Y, Liao H, Zhang LY, Gao JR, Li J, Pang T (2015) Synthesis and biological evaluation of 3-( 1,2,4 triazolo 4,3-a pyridin-3-yl)-4-(indol-3-yl)-maleimides as potent, selective GSK-3 beta inhibitors and neuroprotective agents. Bioorg Med Chem 23(5):1179–1188

    Article  CAS  PubMed  Google Scholar 

  106. Kalakech H, Hibert P, Prunier-Mirebeau D, Tamareille S, Letournel F, Macchi L, Pinet F, Furber A, Prunier F (2014) RISK and SAFE signaling pathway involvement in Apolipoprotein A-I-induced Cardioprotection. PLoS One 9(9):7

    Article  CAS  Google Scholar 

  107. Feng H, Yu Z, Tian Y, Lee YY, Li MS, Go MYY, Cheung YS, Lai PBS, Chan AML, To KF, Chan HLY, Sung JJY, Cheng ASL (2015) A CCRK-EZH2 epigenetic circuitry drives hepatocarcinogenesis and associates with tumor recurrence and poor survival of patients. J Hepatol 62(5):1100–1111

    Article  CAS  PubMed  Google Scholar 

  108. Qi C, Bao J, Zhu H, Xue Y et al (2016) Asperterpenes a and B, two unprecedented meroterpenoids from Aspergillus terreus with BACE1 inhibitory activities. Chem Sci 7:6563–6572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Scotti L, Ishiki H, Mendonca FJB, Santos PF, Tavares JF, Silva MS, Scotti MT (2014) Theoretical research into anticancer activity of Diterpenes isolated from the Paraiban Flora. Nat Prod Commun 9(7):911–914

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the ConselhoNacional de DesenvolvimentoCientífico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Scotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Scotti, L., Scotti, M.T. (2018). In Silico Studies Applied to Natural Products with Potential Activity Against Alzheimer’s Disease. In: Roy, K. (eds) Computational Modeling of Drugs Against Alzheimer’s Disease. Neuromethods, vol 132. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7404-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7404-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7403-0

  • Online ISBN: 978-1-4939-7404-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics