Skip to main content

An Introduction to Male Germline Development

  • Protocol
  • First Online:
Plant Germline Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1669))

Abstract

In this introductory chapter, we describe male germline development in plants taking Arabidopsis thaliana as a reference species. We first describe the transition from sporophytic to germline development, then microsporogenesis including meiosis, followed by male gametophyte development prior to pollination, and finally the progamic phase culminating in double fertilization, which leads to the formation of the embryo and the endosperm. For detailed information on some of these processes or on the molecular underpinning of certain fate transitions, we refer the reader to recent reviews. An important but often neglected aspect of male gametophyte development is the formation of the unique pollen cell wall. In contrast to that of other plant cells, the pollen cell wall is composed of two principal layers, the intine and exine. While the intine, the inner pecto-cellulosic cell wall layer, is biochemically and structurally similar to a “classical” plant cell wall, the exine is a unique composite with sporopollenin as its main component. Biosynthesis of the cell wall is remarkably similar between the spores of mosses and ferns, and pollen of seed plants, although slight differences exist, even between closely related species (reviewed in Wallace et al., AoB Plants 2011:plr027, 2011). In the latter sections of this chapter, we will present a brief overview of cell wall development in Arabidopsis pollen, where this aspect has been intensively studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canales C, Bhatt AM, Scott R et al (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12:1718–1727

    Article  CAS  PubMed  Google Scholar 

  2. Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl S46):560

    Google Scholar 

  3. Grossniklaus U (2011) Plant germline development: a tale of cross-talk, signaling, and cellular interactions. Sex Plant Reprod 24:91–95

    Article  PubMed  Google Scholar 

  4. Twell D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod 24:149–160

    Article  PubMed  Google Scholar 

  5. Schmidt A, Schmid MW, Grossniklaus U (2015) Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 142:229–241

    Article  CAS  PubMed  Google Scholar 

  6. Dickinson HG, Grant-Downton R (2009) Bridging the generation gap: flowering plant gametophytes and animal germlines reveal unexpected similarities. Biol Rev Camb Philos Soc 84:589–615

    Article  PubMed  Google Scholar 

  7. Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York, NY

    Book  Google Scholar 

  8. Kelliher T, Walbot V (2011) Emergence and patterning of the five cell types of the Zea mays anther locule. Dev Biol 350:32–49

    Article  CAS  PubMed  Google Scholar 

  9. Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434

    Article  CAS  PubMed  Google Scholar 

  10. Chang F, Wang Y, Wang S et al (2011) Molecular control of microsporogenesis in Arabidopsis. Curr Opin Plant Biol 14:66–73

    Article  CAS  PubMed  Google Scholar 

  11. Kelliher T, Egger RL, Zhang H et al (2014) Unresolved issues in pre-meiotic anther development. Front Plant Sci 5:347

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chaubal R, Anderson JR, Trimnell MR et al (2003) The transformation of anthers in the msca1 mutant of maize. Planta 216:778–788

    CAS  PubMed  Google Scholar 

  13. Xing S, Zachgo S (2008) ROXY1 and ROXY2, two Arabidopsis glutaredoxin genes, are required for anther development. Plant J 53:790–801

    Article  CAS  PubMed  Google Scholar 

  14. Hong L, Tang D, Zhu K et al (2012) Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. Plant Cell 24:577–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kelliher T, Walbot V (2012) Hypoxia triggers meiotic fate acquisition in maize. Science 337:345–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hill JP, Lord EM (1989) Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pistillata mutant. Can J Bot 67:2922–2936

    Article  Google Scholar 

  17. Owen HA, Makaroff CA (1995) Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 185:7–21

    Article  Google Scholar 

  18. Zajac K (1997) Ultrastructural study of maturing pollen in Arabidopsis thaliana (L.) Heynh. (Brassicaceae). Acta Soc Bot Pol Pol Tow Bot 66:125–131

    Article  Google Scholar 

  19. Yamamoto Y, Nishimura M, Hara-Nishimura I et al (2003) Behavior of vacuoles during microspore and pollen development in Arabidopsis thaliana. Plant Cell Physiol 44:1192–1201

    Article  CAS  PubMed  Google Scholar 

  20. Julian C, Herrero M, Rodrigo J (2014) Anther meiosis time is related to winter cold temperatures in apricot (Prunus armeniaca L.) Environ Exp Bot 100:20–25

    Article  Google Scholar 

  21. Heslop-Harrison J (1966) Cytoplasmic connexions between angiosperm meiocytes. Ann Bot 30:221–222

    Article  Google Scholar 

  22. Blackmore S, Wortley AH, Skvarla JJ et al (2007) Pollen wall development in flowering plants. New Phytol 174:483–498

    Article  CAS  PubMed  Google Scholar 

  23. Burgos MH, Fawcett DW (1955) Studies on the fine structure of the mammalian testis I. Differentiation of the spermatids in the cat (Felis domestica). J Biophys Biochem Cytol 1:287–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fawcett DW, Ito S, Slautterback D (1959) The occurrence of intercellular bridges in groups of cells exhibiting synchronous differentiation. J Biophys Biochem Cytol 5:453–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. King RC (1970) Ovarian development in Drosophila melanogaster. Academic, New York, NY

    Google Scholar 

  26. Feijó JA, Pais MSS (1988) Ultrastructural modifications of plastids and starch metabolism during the microsporogenesis of Ophrys lutea (Orchidaceae). Ann Bot 61:215–219

    Article  Google Scholar 

  27. Feijó JA, Pais MSS (1989) Cytomixis in meiosis during the microsporogenesis of Ophrys lutea: an ultrastructural study. Caryologia 42:37–48

    Article  Google Scholar 

  28. Arnoldy W (1900) Beiträge zur Morphologie der Gymnospermen. IV. Was sind die “Keimbläschen” oder “Hofmeisters-Körperchen”. Eizelle Abietin Flora 87:194–204

    Google Scholar 

  29. Dawson J, Wilson ZA, Aarts MGM et al (1993) Microspore and pollen development in six male-sterile mutants of Arabidopsis thaliana. Can J Bot 71:629–638

    Article  Google Scholar 

  30. Meyer NR, Yaroshevskaya AS (1976) Phylogenetic significance of the development of pollen grain walls in Liliaceae, Juncaceae and Cyperaceae. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Academic, London

    Google Scholar 

  31. Sampson FB (1977) Pollen tetrads of Hedycarya arborea (Monimiaceae). Grana 16:61–73

    Article  Google Scholar 

  32. McGlone MS (1978) Pollen structure of the New Zealand members of the Styphelieae (Epacridaceae). N Z J Bot 16:91–101

    Article  Google Scholar 

  33. Preuss D, Lemieux B, Yen G et al (1993) A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev 7:974–985

    Article  CAS  PubMed  Google Scholar 

  34. Skvarla JJ, Larson DA (1966) Fine structural studies of Zea mays pollen I: cell membranes and exine ontogeny. Am J Bot 53:1112–1125

    Article  Google Scholar 

  35. Paxson-Sowders DM, Owen HA, Makaroff CA (1997) A comparative ultrastructural analysis of exine pattern development in wild-type Arabidopsis and a mutant defective in pattern formation. Protoplasma 198:53–65

    Article  Google Scholar 

  36. Dong X, Hong Z, Sivaramakrishnan M et al (2005) Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J 42:315–328

    Article  CAS  PubMed  Google Scholar 

  37. Heslop-Harrison J (1968) Pollen Wall Development. Science 161:230–237

    Article  CAS  PubMed  Google Scholar 

  38. Ahlers F, Thom I, Lambert J et al (1999) 1H NMR analysis of sporopollenin from Typha angustifolia. Phytochemistry 50:1095–1098

    Article  CAS  Google Scholar 

  39. Domínguez E, Mercado JA, Quesada MA et al (1999) Pollen sporopollenin: degradation and structural elucidation. Sex Plant Reprod 12:171–178

    Article  Google Scholar 

  40. Kim SS, Douglas CJ (2013) Sporopollenin monomer biosynthesis in Arabidopsis. J Plant Biol 56:1–6

    Article  Google Scholar 

  41. Wallace S, Fleming A, Wellman CH et al (2011) Evolutionary development of the plant and spore wall. AoB Plants 2011:plr027

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ross KJ, Fransz P, Jones GH (1996) A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome Res 4:507–516

    Article  CAS  PubMed  Google Scholar 

  43. Zhou S, Wang Y, Li W et al (2011) Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. Plant Cell 23:111–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Armstrong SJ, Caryl AP, Jones GH et al (2002) Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci 115:3645–3655

    Article  CAS  PubMed  Google Scholar 

  45. de Jong JH, Fransz P, Zabel P (1999) High resolution FISH in plants - techniques and applications. Trends Plant Sci 4:258–263

    Article  Google Scholar 

  46. Armstrong SJ, Franklin FC, Jones GH (2001) Nucleolus-associated telomere clustering and pairing precede meiotic chromosome synapsis in Arabidopsis thaliana. J Cell Sci 114:4207–4217

    CAS  PubMed  Google Scholar 

  47. Golubovskaya IN (1979) Genetic control of meiosis. Int Rev Cytol 58:247–290

    Article  CAS  PubMed  Google Scholar 

  48. Mercier R, Grelon M (2008) Meiosis in plants: ten years of gene discovery. Cytogenet Genome Res 120:281–290

    Article  CAS  PubMed  Google Scholar 

  49. Mercier R, Mézard C, Jenczewski E et al (2015) The molecular biology of meiosis in plants. Annu Rev Plant Biol 66:297–327

    Article  CAS  PubMed  Google Scholar 

  50. Koltunow A, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  CAS  PubMed  Google Scholar 

  51. Wang CJ, Tseng CC (2014) Recent advances in understanding of meiosis initiation and the apomictic pathway in plants. Front Plant Sci 5:497

    PubMed  PubMed Central  Google Scholar 

  52. Bretagnolle F, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22

    Article  Google Scholar 

  53. Brownfield L, Köhler C (2011) Unreduced gamete formation in plants: mechanisms and prospects. J Exp Bot 62:1659–1668

    Article  CAS  PubMed  Google Scholar 

  54. Spillane C, Curtis MD, Grossniklaus U (2004) Apomixis technology development-virgin births in farmers’ fields. Nat Biotechnol 22:687–691

    Article  CAS  PubMed  Google Scholar 

  55. Sattler MC, Carvalho CR, Clarindo WR (2016) The polyploidy and its key role in plant breeding. Planta 243:281–296

    Article  CAS  PubMed  Google Scholar 

  56. Dresselhaus T, Franklin-Tong N (2013) Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant 6:1018–1036

    Article  CAS  PubMed  Google Scholar 

  57. Kessler SA, Grossniklaus U (2011) She’s the boss: signaling in pollen tube reception. Curr Opin Plant Biol 14:622–627

    Article  CAS  PubMed  Google Scholar 

  58. Li H, Yang WC (2016) RLKs orchestrate the signaling in plant male-female interaction. Sci China Life Sci 59:867–877

    Article  CAS  PubMed  Google Scholar 

  59. Hedhly A, Vogler H, Schmid MW et al (2016) Starch turnover and metabolism during flower and early embryo development. Plant Physiol 172:2388–2402

    Article  CAS  PubMed  Google Scholar 

  60. Pacini E, Hesse M (2004) Cytophysiology of pollen presentation and dispersal. Flora 199:273–285

    Article  Google Scholar 

  61. Lora J, Herrero M, Hormaza JI (2009) The coexistence of bicellular and tricellular pollen in Annona cherimola (Annonaceae): Implications for pollen evolution. Am J Bot 96:802–808

    Article  PubMed  Google Scholar 

  62. Bolick MR (1981) Mechanics as an aid to interpreting pollen structure and function. Rev Palaeobot Palynol 35:61–79

    Article  Google Scholar 

  63. Wodehouse RP (1935) Pollen grains: their structure, identification, and significance in science and medicine. McGraw-Hill, New York, NY

    Google Scholar 

  64. Heslop-Harrison J (1979) An interpretation of the hydrodynamics of pollen. Am J Bot 66:737

    Article  Google Scholar 

  65. Katifori E, Alben S, Cerda E et al (2010) Foldable structures and the natural design of pollen grains. Proc Natl Acad Sci U S A 107:7635–7639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Volkova OA, Severova EE, Polevova SV (2013) Structural basis of harmomegathy: evidence from Boraginaceae pollen. Plant Syst Evol 299:1769–1779

    Article  Google Scholar 

  67. Müller J (1979) Form and function in angiosperm pollen. Ann Mo Bot Gard 66:593–632

    Article  Google Scholar 

  68. Edlund AF, Zheng Q, Lowe N et al (2016) Pollen from Arabidopsis thaliana and other Brassicaceae are functionally omniaperturate. Am J Bot 103:1006–1019

    Article  PubMed  Google Scholar 

  69. Higashiyama T, Takeuchi H (2015) The mechanism and key molecules involved in pollen tube guidance. Annu Rev Plant Biol 66:393–413

    Article  CAS  PubMed  Google Scholar 

  70. Vogler H, Martinez-Bernardini A, Grossniklaus U (2016) Maybe she’s NOT the boss: male-female crosstalk during sexual plant reproduction. Genome Biol 17:96

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chebli Y, Kaneda M, Zerzour R et al (2012) The cell wall of the Arabidopsis pollen tube–spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol 160:1940–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fayant P, Girlanda O, Chebli Y et al (2010) Finite element model of polar growth in pollen tubes. Plant Cell 22:2579–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vogler H, Draeger C, Weber A et al (2013) The pollen tube: a soft shell with a hard core. Plant J 73:617–627

    Article  CAS  PubMed  Google Scholar 

  74. Hu C, Munglani G, Vogler H et al (2017) Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device. Lab Chip 17:82–90

    Article  CAS  Google Scholar 

  75. Yetisen AK, Jiang L, Cooper JR et al (2011) A microsystem-based assay for studying pollen tube guidance in plant reproduction. J Micromech Microeng 21:054018

    Article  Google Scholar 

  76. Agudelo CG, Sanati Nezhad A, Ghanbari M et al (2013) TipChip: a modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. Plant J 73:1057–1068

    Article  CAS  PubMed  Google Scholar 

  77. Sanati Nezhad A, Naghavi M, Packirisamy M et al (2013) Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling. Proc Natl Acad Sci U S A 110:8093–8098

    Article  PubMed  PubMed Central  Google Scholar 

  78. Horade M, Yanagisawa N, Mizuta Y et al (2014) Growth assay of individual pollen tubes arrayed by microchannel device. Microelectron Eng 118:25–28

    Article  CAS  Google Scholar 

  79. Shamsudhin N, Laeubli N, Atakan HB et al (2016) Massively parallelized pollen tube guidance and mechanical measurements on a lab-on-a-chip platform. PLoS One 11:e0168138

    Article  PubMed  PubMed Central  Google Scholar 

  80. Vogler H, Felekis D, Nelson BJ et al (2015) Measuring the mechanical properties of plant cell walls. Plants (Basel) 4:167–182

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Vogler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Vogler, H., Grossniklaus, U., Hedhly, A. (2017). An Introduction to Male Germline Development. In: Schmidt, A. (eds) Plant Germline Development. Methods in Molecular Biology, vol 1669. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7286-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7286-9_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7285-2

  • Online ISBN: 978-1-4939-7286-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics