Skip to main content

Combined Magnetic Tweezers and Micro-mirror Total Internal Reflection Fluorescence Microscope for Single-Molecule Manipulation and Visualization

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1665))

Abstract

Magnetic tweezers is a versatile yet simple single-molecule manipulation technique that has been used to study a broad range of nucleic acids and nucleic acid-based molecular motors. In this chapter, we combine micro-mirror-based total internal reflection microscopy with a magnetic tweezers instrument, permitting simultaneous single-molecule visualization and mechanical manipulation. We provide a simple method to calibrate the evanescent wave penetration depth via supercoiling of DNA with a fluorescent nanodiamond-labeled magnetic bead and a complementary method employing a surface-immobilized fluorescent nanodiamond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lionnet T, Allemand J-F, Revyakin A, Strick TR, Saleh OA, Bensimon D, Croquette V (2012) Single-molecule studies using magnetic traps. Cold Spring Harb Protoc 2012(1):pdb.top067488. doi:10.1101/pdb.top067488

    PubMed  Google Scholar 

  2. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Seol Y, Neuman KC (2011) Magnetic tweezers for single-molecule manipulation. In: Peterman EJ, Wuite G (eds) Single molecule enzymology, vol. 783. Methods in molecular biology. Humana, New York, NY, pp 265–293

    Google Scholar 

  4. Vlaminck ID, Dekker C (2012) Recent advances in magnetic tweezers. Annu Rev Biophys 41(1):453–472. doi:10.1146/annurev-biophys-122311-100544

    Article  PubMed  Google Scholar 

  5. Fulconis R, Bancaud A, Allemand J-F, Croquette V, Dutreix M, Viovy J-L (2004) Twisting and untwisting a single DNA molecule covered by RecA protein. Biophys J 87(4):2552–2563. doi:10.1529/biophysj.104.043059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kemmerich FE, Kasaciunaite K, Seidel R (2016) Modular magnetic tweezers for single-molecule characterizations of helicases. Methods 108:4–13. doi:10.1016/j.ymeth.2016.07.004

    Article  CAS  PubMed  Google Scholar 

  7. Koster DA, Crut A, Shuman S, Bjornsti M-A, Dekker NH (2010) Cellular strategies for regulating DNA supercoiling: a single-molecule perspective. Cell 142(4):519–530. doi:10.1016/j.cell.2010.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lionnet T, Dawid A, Bigot S, Barre F-X, Saleh OA, Heslot F, Allemand J-F, Bensimon D, Croquette V (2006) DNA mechanics as a tool to probe helicase and translocase activity. Nucleic Acids Res 34(15):4232–4244. doi:10.1093/nar/gkl451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Manosas M, Xi XG, Bensimon D, Croquette V (2010) Active and passive mechanisms of helicases. Nucleic Acids Res 38(16):5518–5526. doi:10.1093/nar/gkq273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seol Y, Strub M-P, Neuman KC (2016) Single molecule measurements of DNA helicase activity with magnetic tweezers and t-test based step-finding analysis. Methods 105:119–127. doi:10.1016/j.ymeth.2016.04.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Charvin G, Strick TR, Bensimon D, Croquette V (2005) Tracking topoisomerase activity at the single-molecule level. Annu Rev Biophys Biomol Struct 34(1):201–219. doi:10.1146/annurev.biophys.34.040204.144433

    Article  CAS  PubMed  Google Scholar 

  12. Neuman KC (2010) Single-molecule measurements of DNA topology and topoisomerases. J Biol Chem 285(25):18967–18971. doi:10.1074/jbc.R109.092437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seol Y, Neuman K (2011) Single-molecule measurements of topoisomerase activity with magnetic tweezers. In: Mashanov GI, Batters C (eds) Single molecule enzymology, vol 778. Methods in molecular biology. Humana, New York, NY, pp 229–241. doi:10.1007/978-1-61779-261-8_15

    Chapter  Google Scholar 

  14. Dulin D, Cui TJ, Cnossen J, Docter Margreet W, Lipfert J, Dekker Nynke H (2015) High spatiotemporal-resolution magnetic tweezers: calibration and applications for DNA dynamics. Biophys J 109(10):2113–2125. doi:10.1016/j.bpj.2015.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huhle A, Klaue D, Brutzer H, Daldrop P, Joo S, Otto O, Keyser UF, Seidel R (2015) Camera-based three-dimensional real-time particle tracking at kHz rates and Ångström accuracy. Nat Commun 6:5885. doi:10.1038/ncomms6885. http://www.nature.com/articles/ncomms6885#supplementary-information

  16. Lansdorp BM, Tabrizi SJ, Dittmore A, Saleh OA (2013) A high-speed magnetic tweezer beyond 10,000 frames per second. Rev Sci Instrum 84(4):044301. doi:10.1063/1.4802678

    Article  PubMed  Google Scholar 

  17. Lipfert J, Hao X, Dekker NH (2009) Quantitative modeling and optimization of magnetic tweezers. Biophys J 96(12):5040–5049. doi:10.1016/j.bpj.2009.03.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. te Velthuis AJW, Kerssemakers JWJ, Lipfert J, Dekker NH (2010) Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data. Biophys J 99(4):1292–1302. doi:10.1016/j.bpj.2010.06.008

    Article  Google Scholar 

  19. Yu Z, Dulin D, Cnossen J, Köber M, van Oene MM, Ordu O, Berghuis BA, Hensgens T, Lipfert J, Dekker NH (2014) A force calibration standard for magnetic tweezers. Rev Sci Instrum 85(12):123114. doi:10.1063/1.4904148

    Article  PubMed  Google Scholar 

  20. Lansdorp BM, Saleh OA (2012) Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments. Rev Sci Instrum 83(2):025115. doi:10.1063/1.3687431

    Article  PubMed  PubMed Central  Google Scholar 

  21. Guo Q, He Y, Lu HP (2014) Manipulating and probing enzymatic conformational fluctuations and enzyme-substrate interactions by single-molecule FRET-magnetic tweezers microscopy. Phys Chem Chem Phys 16(26):13052–13058. doi:10.1039/C4CP01454E

    Article  CAS  PubMed  Google Scholar 

  22. Kemmerich FE, Swoboda M, Kauert DJ, Grieb MS, Hahn S, Schwarz FW, Seidel R, Schlierf M (2015) Simultaneous single-molecule force and fluorescence sampling of dna nanostructure conformations using magnetic tweezers. Nano Lett. doi:10.1021/acs.nanolett.5b03956

  23. Lebel P, Basu A, Oberstrass FC, Tretter EM, Bryant Z (2014) Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension. Nat Methods 11(4):456–462. doi:10.1038/nmeth.2854. http://www.nature.com/nmeth/journal/v11/n4/abs/nmeth.2854.html#supplementary-information

  24. Swoboda M, Grieb M, Hahn S, Schlierf M (2014) Measuring two at the same time: combining magnetic tweezers with single-molecule FRET. In: Toseland CP, Fili N (eds) Fluorescent methods for molecular motors, vol. 105. Experientia supplementum. Springer, Basel, pp 253–276. doi:10.1007/978-3-0348-0856-9_12

  25. Axelrod D (2013) Evanescent excitation and emission in fluorescence microscopy. Biophys J 104(7):1401–1409. doi:10.1016/j.bpj.2013.02.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martin-Fernandez ML, Tynan CJ, Webb SED (2013) A ‘pocket guide’ to total internal reflection fluorescence. J Microsc 252(1):16–22. doi:10.1111/jmi.12070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bumb A, Sarkar SK, Billington N, Brechbiel MW, Neuman KC (2013) Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization. J Am Chem Soc 135(21):7815–7818. doi:10.1021/ja4016815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burghardt TP (2012) Measuring incidence angle for through-the-objective total internal reflection fluorescence microscopy. J Biomed Opt 17(12):126007–126007. doi:10.1117/1.JBO.17.12.126007

    Article  PubMed  PubMed Central  Google Scholar 

  29. Long X, Parks JW, Stone MD (2016) Integrated magnetic tweezers and single-molecule FRET for investigating the mechanical properties of nucleic acid. Methods 105:16–25. doi:10.1016/j.ymeth.2016.06.009

    Article  CAS  PubMed  Google Scholar 

  30. Swoboda M, Grieb MS, Hahn S, Schlierf M (2014) Measuring two at the same time: combining magnetic tweezers with single-molecule FRET. In: Toseland CP, Fili N (eds) Fluorescent methods for molecular motors. Springer, Basel, pp 253–276. doi:10.1007/978-3-0348-0856-9_12

    Google Scholar 

  31. Duboc C, Graves ET, Strick TR (2016) Simple calibration of TIR field depth using the supercoiling response of DNA. Methods 105:56–61. doi:10.1016/j.ymeth.2016.03.028

    Article  CAS  PubMed  Google Scholar 

  32. Larson J, Kirk M, Drier EA, O'Brien W, MacKay JF, Friedman LJ, Hoskins AA (2014) Design and construction of a multiwavelength, micromirror total internal reflectance fluorescence microscope. Nat Protoc 9(10):2317–2328. doi:10.1038/nprot.2014.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Friedman LJ, Gelles J (2015) Multi-wavelength single-molecule fluorescence analysis of transcription mechanisms. Methods 86:27–36. doi:10.1016/j.ymeth.2015.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sarkar SK, Bumb A, Wu X, Sochacki KA, Kellman P, Brechbiel MW, Neuman KC (2014) Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence. Biomed Opt Express 5(4):1190–1202. doi:10.1364/BOE.5.001190

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ganesh Shenoy, Haksung Jung, and Rolf Swenson for providing biotinylated fluorescent nanodiamonds. We thank Gary Melvin for machining. This research was supported by the Intramural Research Program of the National Heart Lung and Blood Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keir C. Neuman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Seol, Y., Neuman, K.C. (2018). Combined Magnetic Tweezers and Micro-mirror Total Internal Reflection Fluorescence Microscope for Single-Molecule Manipulation and Visualization. In: Peterman, E. (eds) Single Molecule Analysis. Methods in Molecular Biology, vol 1665. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7271-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7271-5_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7270-8

  • Online ISBN: 978-1-4939-7271-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics