Skip to main content

Advertisement

Log in

KIF5C, a kinesin motor involved in apical trafficking of MDCK cells

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Polarized traffic in epithelial cells depends on well-organized pathways that direct secretory cargo to the apical or basolateral plasma membrane. In MDCK cells, apical trafficking can be further divided into a lipid raft-dependent and a raft-independent route, which separate biosynthetic cargo in a post-Golgi endosomal compartment. We have now identified KIF5C as a kinesin motor for apical trafficking of both raft-associated sucrase isomaltase and raft-independent neurotrophin receptor. KIF5C was identified by mass spectrometry in vesicle enriched fractions and on immunoisolated post-Golgi vesicles carrying apical cargo. The amount of vesicle-associated KIF5C was highest on material isolated directly after trans-Golgi network release and declined thereafter. Altogether, our data suggest that KIF5C is involved in the passage of apical cargo molecules to a post-Golgi endosomal compartment, where further segregation into distinct vesicle populations proceeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rodriguez-Boulan E, Powell SK (1992) Polarity of epithelial and neuronal cells. Annu Rev Cell Biol 8:395–427

    Article  CAS  PubMed  Google Scholar 

  2. Danielsen EM, Hansen GH (2008) Lipid raft organization and function in the small intestinal brush border. J Physiol Biochem 64:377–382

    Article  CAS  PubMed  Google Scholar 

  3. Delacour D, Jacob R (2006) Apical protein transport. Cell Mol Life Sci 63:2491–2505

    Article  CAS  PubMed  Google Scholar 

  4. Griffiths G, Simons K (1986) The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234:438–443

    Article  CAS  PubMed  Google Scholar 

  5. Jacob R, Naim HY (2001) Apical membrane proteins are transported in distinct vesicular carriers. Curr Biol 11:1444–1450

    Article  CAS  PubMed  Google Scholar 

  6. Jacob R, Heine M, Alfalah M, Naim HY (2003) Distinct cytoskeletal tracks direct individual vesicle populations to the apical membrane of epithelial cells. Curr Biol 13:607–612

    Article  CAS  PubMed  Google Scholar 

  7. Danielsen EM (1995) Involvement of detergent-insoluble complexes in the intracellular transport of intestinal brush border enzymes. Biochemistry 34:1596–1605

    Article  CAS  PubMed  Google Scholar 

  8. Fiedler K, Kobayashi T, Kurzchalia TV, Simons K (1993) Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells. Biochemistry 32:6365–6373

    Article  CAS  PubMed  Google Scholar 

  9. Ojakian GK, Schwimmer R (1988) The polarized distribution of an apical cell surface glycoprotein is maintained by interactions with the cytoskeleton of Madin-Darby canine kidney cells. J Cell Biol 107:2377–2387

    Article  CAS  PubMed  Google Scholar 

  10. Zurzolo C, van’t Hof W, van Meer G, Rodriguez-Boulan E (1994) VIP21/caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol-anchored proteins in epithelial cells. EMBO J 13:42–53

    CAS  PubMed  Google Scholar 

  11. Yeaman C, Le Gall AH, Baldwin AN, Monlauzeur L, Le Bivic A, Rodriguez-Boulan E (1997) The O-glycosylated stalk domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells. J Cell Biol 139:929–940

    Article  CAS  PubMed  Google Scholar 

  12. Le Bivic A, Sambuy Y, Mostov K, Rodriguez-Boulan E (1990) Vectorial targeting of an endogenous apical membrane sialoglycoprotein and uvomorulin in MDCK cells. J Cell Biol 110:1533–1539

    Article  CAS  PubMed  Google Scholar 

  13. Verkade P, Harder T, Lafont F, Simons K (2000) Induction of caveolae in the apical plasma membrane of Madin-Darby canine kidney cells. J Cell Biol 148:727–739

    Article  CAS  PubMed  Google Scholar 

  14. Ihrke G, Bruns JR, Luzio JP, Weisz OA (2001) Competing sorting signals guide endolyn along a novel route to lysosomes in MDCK cells. EMBO J 20:6256–6264

    Article  CAS  PubMed  Google Scholar 

  15. Jacob R, Alfalah M, Grunberg J, Obendorf M, Naim HY (2000) Structural determinants required for apical sorting of an intestinal brush-border membrane protein. J Biol Chem 275:6566–6572

    Article  CAS  PubMed  Google Scholar 

  16. Musch A (2004) Microtubule organization and function in epithelial cells. Traffic 5:1–9

    Article  PubMed  Google Scholar 

  17. Bacallao R, Antony C, Dotti C, Karsenti E, Stelzer EH, Simons K (1989) The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. J Cell Biol 109:2817–2832

    Article  CAS  PubMed  Google Scholar 

  18. Lafont F, Burkhardt JK, Simons K (1994) Involvement of microtubule motors in basolateral and apical transport in kidney cells. Nature 372:801–803

    CAS  PubMed  Google Scholar 

  19. Noda Y, Okada Y, Saito N, Setou M, Xu Y, Zhang Z, Hirokawa N (2001) KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J Cell Biol 155:77–88

    Article  CAS  PubMed  Google Scholar 

  20. Jaulin F, Xue X, Rodriguez-Boulan E, Kreitzer G (2007) Polarization-dependent selective transport to the apical membrane by KIF5B in MDCK cells. Dev Cell 13:511–522

    Article  CAS  PubMed  Google Scholar 

  21. Delacour D, Cramm-Behrens CI, Drobecq H, Le Bivic A, Naim HY, Jacob R (2006) Requirement for galectin-3 in apical protein sorting. Curr Biol 16:408–414

    Article  CAS  PubMed  Google Scholar 

  22. Cramm-Behrens CI, Dienst M, Jacob R (2008) Apical cargo traverses endosomal compartments on the passage to the cell surface. Traffic 9:2206–2220

    Article  CAS  PubMed  Google Scholar 

  23. Murray JW, Bananis E, Wolkoff AW (2000) Reconstitution of ATP-dependent movement of endocytic vesicles along microtubules in vitro: an oscillatory bidirectional process. Mol Biol Cell 11:419–433

    CAS  PubMed  Google Scholar 

  24. Blocker A, Severin FF, Habermann A, Hyman AA, Griffiths G, Burkhardt JK (1996) Microtubule-associated protein-dependent binding of phagosomes to microtubules. J Biol Chem 271:3803–3811

    Article  CAS  PubMed  Google Scholar 

  25. Lu H, Ali MY, Bookwalter CS, Warshaw DM, Trybus KM (2009) Diffusive movement of processive kinesin-1 on microtubules. Traffic 10:1429–1438

    Article  CAS  PubMed  Google Scholar 

  26. Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, Hirokawa N (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79:1209–1220

    Article  CAS  PubMed  Google Scholar 

  27. Wozniak MJ, Melzer M, Dorner C, Haring HU, Lammers R (2005) The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein. BMC Cell Biol 6:35

    Article  PubMed  Google Scholar 

  28. Bohm KJ, Stracke R, Unger E (2000) Speeding up kinesin-driven microtubule gliding in vitro by variation of cofactor composition and physicochemical parameters. Cell Biol Int 24:335–341

    Article  CAS  PubMed  Google Scholar 

  29. Kanai Y, Okada Y, Tanaka Y, Harada A, Terada S, Hirokawa N (2000) KIF5C, a novel neuronal kinesin enriched in motor neurons. J Neurosci 20:6374–6384

    CAS  PubMed  Google Scholar 

  30. Dathe V, Pröls F, Brand-Saberi B (2004) Expression of kinesin kif5c during chick development. Anat Embryol (Berl) 207:475–480

    Article  CAS  Google Scholar 

  31. Smith MJ, Pozo K, Brickley K, Stephenson FA (2006) Mapping the GRIF-1 binding domain of the kinesin, KIF5C, substantiates a role for GRIF-1 as an adaptor protein in the anterograde trafficking of cargoes. J Biol Chem 281:27216–27228

    Article  CAS  PubMed  Google Scholar 

  32. Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, Kawagishi M, Hirokawa N (2002) Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417:83–87

    Article  CAS  PubMed  Google Scholar 

  33. Dunn S, Morrison EE, Liverpool TB, Molina-Paris C, Cross RA, Alonso MC, Peckham M (2008) Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J Cell Sci 121:1085–1095

    Article  CAS  PubMed  Google Scholar 

  34. Konishi Y, Setou M (2009) Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat Neurosci 12:559–567

    Article  CAS  PubMed  Google Scholar 

  35. Cresawn KO, Potter BA, Oztan A, Guerriero CJ, Ihrke G, Goldenring JR, Apodaca G, Weisz OA (2007) Differential involvement of endocytic compartments in the biosynthetic traffic of apical proteins. EMBO J 26:3737–3748

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt MR, Maritzen T, Kukhtina V, Higman VA, Doglio L, Barak NN, Strauss H, Oschkinat H, Dotti CG, Haucke V (2009) Regulation of endosomal membrane traffic by a Gadkin/AP-1/kinesin KIF5 complex. Proc Natl Acad Sci U S A 106:15344–15349

    Article  CAS  PubMed  Google Scholar 

  37. Cai Y, Singh BB, Aslanukov A, Zhao H, Ferreira PA (2001) The docking of kinesins, KIF5B and KIF5C, to Ran-binding protein 2 (RanBP2) is mediated via a novel RanBP2 domain. J Biol Chem 276:41594–41602

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We are grateful to M. Dienst for technical assistance. Antibodies against SI and p75 were generous gifts from H.P. Hauri (Biocenter, University of Basel, Switzerland) and A. Le Bivic (Faculté des Sciences de Luminy, Marseille, France). This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany (grants JA 1033, Graduiertenkolleg 1216 and Sonderforschungsbereich 593).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Jacob.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astanina, K., Jacob, R. KIF5C, a kinesin motor involved in apical trafficking of MDCK cells. Cell. Mol. Life Sci. 67, 1331–1342 (2010). https://doi.org/10.1007/s00018-009-0253-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0253-6

Keywords

Navigation