Skip to main content

Clinical CNS Microdialysis of Glutamate with a Special Methodological Focus on Human Spinal Cord

  • Protocol
  • First Online:
Biochemical Approaches for Glutamatergic Neurotransmission

Part of the book series: Neuromethods ((NM,volume 130))

Abstract

Glutamate has a paramount role in central nervous system since it is the main excitatory neurotransmitter in both the brain and the spinal cord. In clinical studies, the monitoring of glutamate has revealed tight links between the variations of its interstitial concentration and those of other metabolic biomarkers and partial pressure in oxygen within tissue. The use of microdialysis has allowed to monitor glutamate over several days in patients with brain injury, epilepsy, or Parkinson’s disease. We describe here a neurochemical method carried out in the spinal cord of patients suffering from chronic pain compared to patients suffering from spasticity, with a stress on peculiarities on such a monitoring. We provide also a detailed discussion on the significant usefulness of microdialysis and its technical and methodological limits in the specific field of clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker DA, Kalivas PW (2007) Insights into glutamate physiology: contribution of studies utilizing in vivo microdialysis. In: Westerink B, Cremers T (eds) Handbook of microdialysis. Elsevier, Amsterdam, pp 33–46

    Google Scholar 

  2. Chavagnac D (2002) Suivi par microdialyse intraspinale per-opératoire de la libération des acides aminés neurotransmetteurs chez les patients douloureux chroniques Thèse d'exercice. Pharmacie (Pharm. D. thesis), Université Claude Bernard Lyon 1, France

    Google Scholar 

  3. Lorrain DS, Correa L, Anderson J, Varney M (2002) Activation of spinal group I metabotropic glutamate receptors in rats evokes local glutamate release and spontaneous nociceptive behaviors: effects of 2-methyl-6-(phenylethynyl)-pyridine pretreatment. Neurosci Lett 327(3):198–202

    Article  CAS  PubMed  Google Scholar 

  4. Schley M, Topfner S, Wiech K, Schaller HE, Konrad CJ, Schmelz M, Birbaumer N (2007) Continuous brachial plexus blockade in combination with the NMDA receptor antagonist memantine prevents phantom pain in acute traumatic upper limb amputees. Eur J Pain 11(3):299–308. doi:10.1016/j.ejpain.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  5. Zhou Q, Price DD, Callam CS, Woodruff MA, Verne GN (2011) Effects of theN-methyl-d-aspartate receptor on temporal summation of second pain (wind-up) in irritable bowel syndrome. J Pain 12(2):297–303. doi:10.1016/j.jpain.2010.09.002

    Article  CAS  PubMed  Google Scholar 

  6. Petersen KL, Iyengar S, Chappell AS, Lobo ED, Reda H, Prucka WR, Verfaille SJ (2014) Safety, tolerability, pharmacokinetics, and effects on human experimental pain of the selective ionotropic glutamate receptor 5 (iGluR5) antagonist LY545694 in healthy volunteers. Pain 155(5):929–936. doi:10.1016/j.pain.2014.01.019

    Article  CAS  PubMed  Google Scholar 

  7. Truini A, Piroso S, Pasquale E, Notartomaso S, Di Stefano G, Lattanzi R, Battaglia G, Nicoletti F, Cruccu G (2015) N-acetyl-cysteine, a drug that enhances the endogenous activation of group-II metabotropic glutamate receptors, inhibits nociceptive transmission in humans. Mol Pain 11:14. doi:10.1186/s12990-015-0009-2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sindou M, Quoex C, Baleydier C (1974) Fiber organization at the posterior spinal cord-rootlet junction in man. J Comp Neurol 153(1):15–26. doi:10.1002/cne.901530103

    Article  CAS  PubMed  Google Scholar 

  9. Mertens P, Ghaemmaghami C, Bert L, Perret-Liaudet A, Sindou M, Renaud B (2000) Amino acids in spinal dorsal horn of patients during surgery for neuropathic pain or spasticity. Neuroreport 11(8):1795–1798

    Article  CAS  PubMed  Google Scholar 

  10. Sindou M, Turano G, Pantieri R, Mertens P, Mauguiere F (1994) Intraoperative monitoring of spinal cord SEPs during microsurgical DREZotomy (MDT) for pain, spasticity and hyperactive bladder. Stereotact Funct Neurosurg 62(1–4):164–170

    CAS  PubMed  Google Scholar 

  11. Sindou M, Georgoulis G, Mertens P (2014) Neurosurgery for spasticity. A practical guide for treating children and adults. Springer, New York

    Book  Google Scholar 

  12. Mertens P, Ghaemmaghami C, Bert L, Perret-Liaudet A, Guenot M, Naous H, Laganier L, Later R, Sindou M, Renaud B (2001) Microdialysis study of amino acid neurotransmitters in the spinal dorsal horn of patients undergoing microsurgical dorsal root entry zone lesioning. Technical note. J Neurosurg 94(1 Suppl):165–173

    CAS  PubMed  Google Scholar 

  13. Parrot S, Sauvinet V, Xavier JM, Chavagnac D, Mouly-Badina L, Garcia-Larrea L, Mertens P, Renaud B (2004) Capillary electrophoresis combined with microdialysis in the human spinal cord: a new tool for monitoring rapid peroperative changes in amino acid neurotransmitters within the dorsal horn. Electrophoresis 25(10–11):1511–1517. doi:10.1002/elps.200305852

    Article  CAS  PubMed  Google Scholar 

  14. Skilling SR, Smullin DH, Beitz AJ, Larson AA (1988) Extracellular amino acid concentrations in the dorsal spinal cord of freely moving rats following veratridine and nociceptive stimulation. J Neurochem 51(1):127–132

    Article  CAS  PubMed  Google Scholar 

  15. Parrot S (2000) Intérêts et limites de la microdialyse intracérébrale couplée à l'électrophorèse capillaire pour l'étude des acides aminés excitateurs cérébraux. Thèse de doctorat Sciences. Biochimie (Ph.D. thesis), Université Claude Bernard Lyon 1

    Google Scholar 

  16. Lindefors N, Amberg G, Ungerstedt U (1989) Intracerebral microdialysis: I. Experimental studies of diffusion kinetics. J Pharmacol Methods 22(3):141–156

    Article  CAS  PubMed  Google Scholar 

  17. Bert L, Parrot S, Robert F, Desvignes C, Denoroy L, Suaud-Chagny MF, Renaud B (2002) In vivo temporal sequence of rat striatal glutamate, aspartate and dopamine efflux during apomorphine, nomifensine, NMDA and PDC in situ administration. Neuropharmacology 43(5):825–835

    Article  CAS  PubMed  Google Scholar 

  18. Parrot S, Sauvinet V, Riban V, Depaulis A, Renaud B, Denoroy L (2004) High temporal resolution for in vivo monitoring of neurotransmitters in awake epileptic rats using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection. J Neurosci Methods 140(1–2):29–38. doi:10.1016/j.jneumeth.2004.03.025

    Article  CAS  PubMed  Google Scholar 

  19. Phang I, Zoumprouli A, Papadopoulos MC, Saadoun S (2016) Microdialysis to optimize cord perfusion and drug delivery in spinal cord injury. Ann Neurol 80(4):522–531. doi:10.1002/ana.24750

    Article  CAS  PubMed  Google Scholar 

  20. Chen S, Phang I, Zoumprouli A, Papadopoulos MC, Saadoun S (2016) Metabolic profile of injured human spinal cord determined using surface microdialysis. J Neurochem 139(5):700–705. doi:10.1111/jnc.13854

    Article  CAS  PubMed  Google Scholar 

  21. Kanthan R, Shuaib A (1995) Clinical evaluation of extracellular amino acids in severe head trauma by intracerebral in vivo microdialysis. J Neurol Neurosurg Psychiatry 59(3):326–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vespa P, Prins M, Ronne-Engstrom E, Caron M, Shalmon E, Hovda DA, Martin NA, Becker DP (1998) Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg 89(6):971–982. doi:10.3171/jns.1998.89.6.0971

    Article  CAS  PubMed  Google Scholar 

  23. Stahl N, Mellergard P, Hallstrom A, Ungerstedt U, Nordstrom CH (2001) Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain lesions. Acta Anaesthesiol Scand 45(8):977–985

    Article  CAS  PubMed  Google Scholar 

  24. Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M (2008) Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir 150(5):461–469.; discussion 470. doi:10.1007/s00701-008-1580-3

    Article  CAS  PubMed  Google Scholar 

  25. Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS (2004) Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma 21(7):894–906. doi:10.1089/0897715041526195

    Article  PubMed  Google Scholar 

  26. Sarrafzadeh AS, Kiening KL, Callsen TA, Unterberg AW (2003) Metabolic changes during impending and manifest cerebral hypoxia in traumatic brain injury. Br J Neurosurg 17(4):340–346

    Article  CAS  PubMed  Google Scholar 

  27. Marion DW, Puccio A, Wisniewski SR, Kochanek P, Dixon CE, Bullian L, Carlier P (2002) Effect of hyperventilation on extracellular concentrations of glutamate, lactate, pyruvate, and local cerebral blood flow in patients with severe traumatic brain injury. Crit Care Med 30(12):2619–2625. doi:10.1097/01.CCM.0000038877.40844.0F

    Article  CAS  PubMed  Google Scholar 

  28. Quintard H, Patet C, Suys T, Marques-Vidal P, Oddo M (2015) Normobaric hyperoxia is associated with increased cerebral excitotoxicity after severe traumatic brain injury. Neurocrit Care 22(2):243–250. doi:10.1007/s12028-014-0062-0

    Article  CAS  PubMed  Google Scholar 

  29. Meierhans R, Bechir M, Ludwig S, Sommerfeld J, Brandi G, Haberthur C, Stocker R, Stover JF (2010) Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury. Crit Care 14(1):R13. doi:10.1186/cc8869

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vespa P, Boonyaputthikul R, McArthur DL, Miller C, Etchepare M, Bergsneider M, Glenn T, Martin N, Hovda D (2006) Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med 34(3):850–856. doi:10.1097/01.CCM.0000201875.12245.6F

    Article  CAS  PubMed  Google Scholar 

  31. Mellergard P, Sjogren F, Hillman J (2012) The cerebral extracellular release of glycerol, glutamate, and FGF2 is increased in older patients following severe traumatic brain injury. J Neurotrauma 29(1):112–118. doi:10.1089/neu.2010.1732

    Article  PubMed  Google Scholar 

  32. Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C (2010) Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg 113(3):564–570. doi:10.3171/2009.12.JNS09689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Timofeev I, Carpenter KL, Nortje J, Al-Rawi PG, O'Connell MT, Czosnyka M, Smielewski P, Pickard JD, Menon DK, Kirkpatrick PJ, Gupta AK, Hutchinson PJ (2011) Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 134(Pt 2):484–494. doi:10.1093/brain/awq353

    Article  PubMed  Google Scholar 

  34. Tolias CM, Richards DA, Bowery NG, Sgouros S (2002) Extracellular glutamate in the brains of children with severe head injuries: a pilot microdialysis study. Childs Nerv Syst 18(8):368–374. doi:10.1007/s00381-002-0623-y

    PubMed  Google Scholar 

  35. Richards DA, Tolias CM, Sgouros S, Bowery NG (2003) Extracellular glutamine to glutamate ratio may predict outcome in the injured brain: a clinical microdialysis study in children. Pharmacol Res 48(1):101–109

    CAS  PubMed  Google Scholar 

  36. Alves OL, Doyle AJ, Clausen T, Gilman C, Bullock R (2003) Evaluation of topiramate neuroprotective effect in severe TBI using microdialysis. Ann N Y Acad Sci 993:25–34. discussion 48-53

    Article  CAS  PubMed  Google Scholar 

  37. Mazzeo AT, Alves OL, Gilman CB, Hayes RL, Tolias C, Niki Kunene K, Ross Bullock M (2008) Brain metabolic and hemodynamic effects of cyclosporin A after human severe traumatic brain injury: a microdialysis study. Acta Neurochir 150(10):1019–1031.; discussion 1031. doi:10.1007/s00701-008-0021-7

    Article  PubMed  Google Scholar 

  38. Reinstrup P, Nordstrom CH (2011) Prostacyclin infusion may prevent secondary damage in pericontusional brain tissue. Neurocrit Care 14(3):441–446. doi:10.1007/s12028-010-9486-3

    Article  CAS  PubMed  Google Scholar 

  39. Berg A, Bellander BM, Wanecek M, Gamrin L, Elving A, Rooyackers O, Ungerstedt U, Wernerman J (2006) Intravenous glutamine supplementation to head trauma patients leaves cerebral glutamate concentration unaffected. Intensive Care Med 32(11):1741–1746. doi:10.1007/s00134-006-0375-3

    Article  CAS  PubMed  Google Scholar 

  40. Ronne Engstrom E, Hillered L, Enblad P, Karlsson T (2005) Cerebral interstitial levels of glutamate and glutamine after intravenous administration of nutritional amino acids in neurointensive care patients. Neurosci Lett 384(1–2):7–10. doi:10.1016/j.neulet.2005.04.030

    Article  PubMed  Google Scholar 

  41. Saveland H, Nilsson OG, Boris-Moller F, Wieloch T, Brandt L (1996) Intracerebral microdialysis of glutamate and aspartate in two vascular territories after aneurysmal subarachnoid hemorrhage. Neurosurgery 38(1):12–19. discussion 19–20

    Article  CAS  PubMed  Google Scholar 

  42. Nilsson OG, Brandt L, Ungerstedt U, Saveland H (1999) Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery 45(5):1176–1184. discussion 1184–1185

    Article  CAS  PubMed  Google Scholar 

  43. Kett-White R, Hutchinson PJ, Al-Rawi PG, Gupta AK, Pickard JD, Kirkpatrick PJ (2002) Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes. Neurosurgery 50(6):1213–1221. discussion 1221–1222

    PubMed  Google Scholar 

  44. Sarrafzadeh AS, Sakowitz OW, Kiening KL, Benndorf G, Lanksch WR, Unterberg AW (2002) Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med 30(5):1062–1070

    Article  PubMed  Google Scholar 

  45. Sarrafzadeh A, Haux D, Sakowitz O, Benndorf G, Herzog H, Kuechler I, Unterberg A (2003) Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis. Stroke 34(6):1382–1388. doi:10.1161/01.STR.0000074036.97859.02

    Article  CAS  PubMed  Google Scholar 

  46. Sakowitz OW, Santos E, Nagel A, Krajewski KL, Hertle DN, Vajkoczy P, Dreier JP, Unterberg AW, Sarrafzadeh AS (2013) Clusters of spreading depolarizations are associated with disturbed cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke 44(1):220–223. doi:10.1161/STROKEAHA.112.672352

    Article  PubMed  Google Scholar 

  47. Mathieu L, Duclos AS, Limpar P, Grousson S, Convert J, Dailler F, Perret-Liaudet A, Xavier JM, Burel E, Artru F, Renaud B (2003) In vivo biochemical monitoring of cerebral ischemia by intracerebral microdialysis: a case report. In: Kehr J, Fuxe K, Ungerstedt U, Svensson T (eds) Monitoring molecules in neuroscience, Stockholm, Sweden, pp 225–227

    Google Scholar 

  48. Sarrafzadeh AS, Haux D, Ludemann L, Amthauer H, Plotkin M, Kuchler I, Unterberg AW (2004) Cerebral ischemia in aneurysmal subarachnoid hemorrhage: a correlative microdialysis-PET study. Stroke 35(3):638–643. doi:10.1161/01.STR.0000116101.66624.F1

    Article  PubMed  Google Scholar 

  49. Sarrafzadeh A, Haux D, Plotkin M, Ludemann L, Amthauer H, Unterberg A (2005) Bedside microdialysis reflects dysfunction of cerebral energy metabolism in patients with aneurysmal subarachnoid hemorrhage as confirmed by 15 O-H2 O-PET and 18 F-FDG-PET. J Neuroradiol 32(5):348–351

    Article  CAS  PubMed  Google Scholar 

  50. Samuelsson C, Hillered L, Zetterling M, Enblad P, Hesselager G, Ryttlefors M, Kumlien E, Lewen A, Marklund N, Nilsson P, Salci K, Ronne-Engstrom E (2007) Cerebral glutamine and glutamate levels in relation to compromised energy metabolism: a microdialysis study in subarachnoid hemorrhage patients. J Cereb Blood Flow Metab 27(7):1309–1317. doi:10.1038/sj.jcbfm.9600433

    Article  CAS  PubMed  Google Scholar 

  51. Samuelsson C, Howells T, Kumlien E, Enblad P, Hillered L, Ronne-Engstrom E (2009) Relationship between intracranial hemodynamics and microdialysis markers of energy metabolism and glutamate-glutamine turnover in patients with subarachnoid hemorrhage. Clinical article. J Neurosurg 111(5):910–915. doi:10.3171/2008.8.JNS0889

    Article  CAS  PubMed  Google Scholar 

  52. Nilsson OG, Polito A, Saveland H, Ungerstedt U, Nordstrom CH (2006) Are primary supratentorial intracerebral hemorrhages surrounded by a biochemical penumbra? A microdialysis study. Neurosurgery 59(3):521–528.; discussion 521–528. doi:10.1227/01.NEU.0000227521.58701.E5

    Article  PubMed  Google Scholar 

  53. Miller CM, Vespa PM, McArthur DL, Hirt D, Etchepare M (2007) Frameless stereotactic aspiration and thrombolysis of deep intracerebral hemorrhage is associated with reduced levels of extracellular cerebral glutamate and unchanged lactate pyruvate ratios. Neurocrit Care 6(1):22–29. doi:10.1385/NCC:6:1:22

    Article  CAS  PubMed  Google Scholar 

  54. Ho CL, Ang CB, Lee KK, Ng IH (2008) Effects of glycaemic control on cerebral neurochemistry in primary intracerebral haemorrhage. J Clin Neurosci 15(4):428–433. doi:10.1016/j.jocn.2006.08.011

    Article  CAS  PubMed  Google Scholar 

  55. Bullock R, Zauner A, Woodward J, Young HF (1995) Massive persistent release of excitatory amino acids following human occlusive stroke. Stroke 26(11):2187–2189

    Article  CAS  PubMed  Google Scholar 

  56. Schneweis S, Grond M, Staub F, Brinker G, Neveling M, Dohmen C, Graf R, Heiss WD (2001) Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke 32(8):1863–1867

    Article  CAS  PubMed  Google Scholar 

  57. Dohmen C, Bosche B, Graf R, Staub F, Kracht L, Sobesky J, Neveling M, Brinker G, Heiss WD (2003) Prediction of malignant course in MCA infarction by PET and microdialysis. Stroke 34(9):2152–2158. doi:10.1161/01.STR.0000083624.74929.32

    Article  PubMed  Google Scholar 

  58. Woitzik J, Pinczolits A, Hecht N, Sandow N, Scheel M, Drenckhahn C, Dreier JP, Vajkoczy P (2014) Excitotoxicity and metabolic changes in association with infarct progression. Stroke 45(4):1183–1185. doi:10.1161/STROKEAHA.113.004475

    Article  CAS  PubMed  Google Scholar 

  59. Berger C, Schabitz WR, Georgiadis D, Steiner T, Aschoff A, Schwab S (2002) Effects of hypothermia on excitatory amino acids and metabolism in stroke patients: a microdialysis study. Stroke 33(2):519–524

    Article  CAS  PubMed  Google Scholar 

  60. Berger C, Kiening K, Schwab S (2008) Neurochemical monitoring of therapeutic effects in large human MCA infarction. Neurocrit Care 9(3):352–356. doi:10.1007/s12028-008-9093-8

    Article  CAS  PubMed  Google Scholar 

  61. Berger C, Sakowitz OW, Kiening KL, Schwab S (2005) Neurochemical monitoring of glycerol therapy in patients with ischemic brain edema. Stroke 36(2):e4–e6. doi:10.1161/01.STR.0000151328.70519.e9

    Article  CAS  PubMed  Google Scholar 

  62. Kanthan R, Shuaib A, Griebel R, Miyashita H (1995) Intracerebral human microdialysis. In vivo study of an acute focal ischemic model of the human brain. Stroke 26(5):870–873

    Article  CAS  PubMed  Google Scholar 

  63. Kanthan R, Shuaib A, Griebel R, Miyashita H, Kalra J (1996) Glucose-induced decrease in glutamate levels in ischemic human brain by in-vivo microdialysis. Neurosci Lett 209(3):207–209

    Article  CAS  PubMed  Google Scholar 

  64. Xu W, Mellergard P, Ungerstedt U, Nordstrom CH (2002) Local changes in cerebral energy metabolism due to brain retraction during routine neurosurgical procedures. Acta Neurochir 144(7):679–683. doi:10.1007/s00701-002-0946-1

    Article  CAS  PubMed  Google Scholar 

  65. Mendelowitsch A, Sekhar LN, Wright DC, Nadel A, Miyashita H, Richardson R, Kent M, Shuaib A (1998) An increase in extracellular glutamate is a sensitive method of detecting ischaemic neuronal damage during cranial base and cerebrovascular surgery. An in vivo microdialysis study. Acta Neurochir 140(4):349–355. discussion 356

    Article  CAS  PubMed  Google Scholar 

  66. Mendelowitsch A, Mergner GW, Shuaib A, Sekhar LN (1998) Cortical brain microdialysis and temperature monitoring during hypothermic circulatory arrest in humans. J Neurol Neurosurg Psychiatry 64(5):611–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Agren-Wilsson A, Roslin M, Eklund A, Koskinen LO, Bergenheim AT, Malm J (2003) Intracerebral microdialysis and CSF hydrodynamics in idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 74(2):217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carlson H, Ronne-Engstrom E, Ungerstedt U, Hillered L (1992) Seizure related elevations of extracellular amino acids in human focal epilepsy. Neurosci Lett 140(1):30–32

    Article  CAS  PubMed  Google Scholar 

  69. Ronne-Engstrom E, Hillered L, Flink R, Spannare B, Ungerstedt U, Carlson H (1992) Intracerebral microdialysis of extracellular amino acids in the human epileptic focus. J Cereb Blood Flow Metab 12(5):873–876. doi:10.1038/jcbfm.1992.119

    Article  CAS  PubMed  Google Scholar 

  70. Wilson CL, Maidment NT, Shomer MH, Behnke EJ, Ackerson L, Fried I, Engel J Jr (1996) Comparison of seizure related amino acid release in human epileptic hippocampus versus a chronic, kainate rat model of hippocampal epilepsy. Epilepsy Res 26(1):245–254

    Article  PubMed  Google Scholar 

  71. Thomas PM, Phillips JP, Delanty N, O'Connor WT (2003) Elevated extracellular levels of glutamate, aspartate and gamma-aminobutyric acid within the intraoperative, spontaneously epileptiform human hippocampus. Epilepsy Res 54(1):73–79

    Article  CAS  PubMed  Google Scholar 

  72. Thomas PM, Phillips JP, O'Connor WT (2005) Microdialysis of the lateral and medial temporal lobe during temporal lobe epilepsy surgery. Surg Neurol 63(1):70–79.; discussion 79. doi:10.1016/j.surneu.2004.02.031

    Article  PubMed  Google Scholar 

  73. Thomas PM, Phillips JP, O'Connor WT (2004) Hippocampal microdialysis during spontaneous intraoperative epileptiform activity. Acta Neurochir 146(2):143–151. doi:10.1007/s00701-003-0189-9

    Article  CAS  PubMed  Google Scholar 

  74. Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57(2):226–235. doi:10.1002/ana.20380

    Article  CAS  PubMed  Google Scholar 

  75. Cavus I, Pan JW, Hetherington HP, Abi-Saab W, Zaveri HP, Vives KP, Krystal JH, Spencer SS, Spencer DD (2008) Decreased hippocampal volume on MRI is associated with increased extracellular glutamate in epilepsy patients. Epilepsia 49(8):1358–1366. doi:10.1111/j.1528-1167.2008.01603.x

    Article  PubMed  Google Scholar 

  76. Cavus I, Widi GA, Duckrow RB, Zaveri H, Kennard JT, Krystal J, Spencer DD (2016) 50 Hz hippocampal stimulation in refractory epilepsy: higher level of basal glutamate predicts greater release of glutamate. Epilepsia 57(2):288–297. doi:10.1111/epi.13269

    Article  CAS  PubMed  Google Scholar 

  77. Stefani A, Fedele E, Galati S, Pepicelli O, Frasca S, Pierantozzi M, Peppe A, Brusa L, Orlacchio A, Hainsworth AH, Gattoni G, Stanzione P, Bernardi G, Raiteri M, Mazzone P (2005) Subthalamic stimulation activates internal pallidus: evidence from cGMP microdialysis in PD patients. Ann Neurol 57(3):448–452. doi:10.1002/ana.20402

    Article  PubMed  Google Scholar 

  78. Kilpatrick M, Church E, Danish S, Stiefel M, Jaggi J, Halpern C, Kerr M, Maloney E, Robinson M, Lucki I, Krizman-Grenda E, Baltuch G (2010) Intracerebral microdialysis during deep brain stimulation surgery. J Neurosci Methods 190(1):106–111. doi:10.1016/j.jneumeth.2010.04.013

    Article  PubMed  Google Scholar 

  79. Buchanan RJ, Darrow DP, Meier KT, Robinson J, Schiehser DM, Glahn DC, Nadasdy Z (2014) Changes in GABA and glutamate concentrations during memory tasks in patients with Parkinson's disease undergoing DBS surgery. Front Hum Neurosci 8:81. doi:10.3389/fnhum.2014.00081

    Article  PubMed  PubMed Central  Google Scholar 

  80. Buchanan RJ, Gjini K, Darrow D, Varga G, Robinson JL, Nadasdy Z (2015) Glutamate and GABA concentration changes in the globus pallidus internus of Parkinson's patients during performance of implicit and declarative memory tasks: a report of two subjects. Neurosci Lett 589:73–78. doi:10.1016/j.neulet.2015.01.028

    Article  CAS  PubMed  Google Scholar 

  81. Bianchi L, De Micheli E, Bricolo A, Ballini C, Fattori M, Venturi C, Pedata F, Tipton KF, Della Corte L (2004) Extracellular levels of amino acids and choline in human high grade gliomas: an intraoperative microdialysis study. Neurochem Res 29(1):325–334

    Article  CAS  PubMed  Google Scholar 

  82. Wibom C, Surowiec I, Moren L, Bergstrom P, Johansson M, Antti H, Bergenheim AT (2010) Metabolomic patterns in glioblastoma and changes during radiotherapy: a clinical microdialysis study. J Proteome Res 9(6):2909–2919. doi:10.1021/pr901088r

    Article  CAS  PubMed  Google Scholar 

  83. Hillman J, Aneman O, Anderson C, Sjogren F, Saberg C, Mellergard P (2005) A microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery 56(6):1264–1268. discussion 1268–1270

    Article  PubMed  Google Scholar 

  84. Hillman J, Milos P, Yu ZQ, Sjogren F, Anderson C, Mellergard P (2006) Intracerebral microdialysis in neurosurgical intensive care patients utilising catheters with different molecular cut-off (20 and 100 kDa). Acta Neurochir 148(3):319–324.; discussion 324. doi:10.1007/s00701-005-0670-8

    Article  CAS  PubMed  Google Scholar 

  85. Hutchinson PJ, O'Connell MT, Nortje J, Smith P, Al-Rawi PG, Gupta AK, Menon DK, Pickard JD (2005) Cerebral microdialysis methodology—evaluation of 20 kDa and 100 kDa catheters. Physiol Meas 26(4):423–428. doi:10.1088/0967-3334/26/4/008

    Article  CAS  PubMed  Google Scholar 

  86. Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom CH (2000) Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 47(3):701–709. discussion 709–710

    CAS  PubMed  Google Scholar 

  87. Chen KC (2006) Effects of tissue trauma on the characteristics of microdialysis zero-net-flux method sampling neurotransmitters. J Theor Biol 238(4):863–881. doi:10.1016/j.jtbi.2005.06.035

    Article  CAS  PubMed  Google Scholar 

  88. Tholance Y, Barcelos G, Dailler F, Perret-Liaudet A, Renaud B (2015) Clinical neurochemistry of subarachnoid hemorrhage: toward predicting individual outcomes via biomarkers of brain energy metabolism. ACS Chem Neurosci 6(12):1902–1905. doi:10.1021/acschemneuro.5b00299

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Parrot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Renaud, B., Denoroy, L., Collin-Chavagnac, D., Mertens, P., Parrot, S. (2018). Clinical CNS Microdialysis of Glutamate with a Special Methodological Focus on Human Spinal Cord. In: Parrot, S., Denoroy, L. (eds) Biochemical Approaches for Glutamatergic Neurotransmission. Neuromethods, vol 130. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7228-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7228-9_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7227-2

  • Online ISBN: 978-1-4939-7228-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics