Skip to main content

CBMs as Probes to Explore Plant Cell Wall Heterogeneity Using Immunocytochemistry

  • Protocol
  • First Online:
Protein-Carbohydrate Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1588))

Abstract

Immunocytochemistry is a widely used technique to localize antigen within intact tissues. Plant cell walls are complex matrixes of highly decorated polysaccharides and the large number of CBM families displaying specific substrate recognition reflects this complexity. The accessibility of large proteins, such as antibodies, to their cell wall epitopes may be sometimes difficult due to steric hindrance problems. Due to their smaller size, CBMs are interesting alternative probes. The aim of this chapter is to describe the use of CBM as probes to explore complex polysaccharide topochemistry in muro and to quantify enzymatic deconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  2. Velickovic D, Ropartz D, Guillon F, Saulnier L, Rogniaux H (2014) New insights into the structural and spatial variability of cell-wall polysaccharides during wheat grain development, as revealed through MALDI mass spectrometry imaging. J Exp Bot 65(8):2079–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61(1):263–289

    Article  CAS  PubMed  Google Scholar 

  4. McCartney L, Ormerod AP, Gidley MJ, Knox JP (2000) Temporal and spatial regulation of pectic (1-4)-beta-d-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. Plant J 22(2):105–113

    Article  CAS  PubMed  Google Scholar 

  5. Freshour G, Clay RP, Fuller MS, Albersheim P, Darvill AG, Hahn MG (1996) Developmental and tissue-specific structural alterations of the cell-wall polysaccharides of Arabidopsis thaliana roots. Plant Physiol 110(4):1413–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McCartney L, Marcus SE, Knox JP (2005 Apr) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histochem Cytochem 53(4):543–546

    Article  CAS  PubMed  Google Scholar 

  7. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 781:769–781

    Article  Google Scholar 

  8. Black GW, Hazlewood GP, Millward-Sadler SJ, Laurie JI, Gilbert HJ (1995) A modular xylanase containing a novel non-catalytic xylan-specific binding domain. Biochem J 307(1):191–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R, Petterson G (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. FEBS Lett 204(2):223–227

    Article  CAS  Google Scholar 

  10. Coutinho JB, Gilkes NR, Warren RAJ, Kilburn DG, Miller RC (1992) The binding of Cellulomonas fimi endoglucanase C (CenC) to cellulose and Sephadex is mediated by the N-terminal repeats. Mol Microbiol 6(9):1243–1252

    Article  CAS  PubMed  Google Scholar 

  11. Stoll D, Boraston A, Stålbrand H, McLean BW, Kilburn DG, Warren RAJ (2000) Mannanase Man26A from Cellulomonas fimi has a mannan-binding module. FEMS Microbiol Lett 183(2):265–269

    Article  CAS  PubMed  Google Scholar 

  12. Sorimachi K, Le Gal-Coëffet M-F, Williamson G, Archer DB, Williamson MP (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to β-cyclodextrin. Structure 5(5):647–661

    Article  CAS  PubMed  Google Scholar 

  13. Ruel K, Joseleau JP (1984) Use of enzyme-gold complexes for the ultrastructural localization of hemicelluloses in the plant cell wall. Histochemistry 81(6):573–580

    Article  CAS  PubMed  Google Scholar 

  14. Bendayan M, Banhamou N (1987) Ultrastructural localization of glucoside residues on tissue sections by applying the enzyme-gold approach. J Histochem Cytochem 35(10):1149–1155

    Article  CAS  PubMed  Google Scholar 

  15. Hilden L, Daniel G, Johansson G (2003) Use of a fluorescence labelled, carbohydrate-binding module from Phanerochaete chrysosporium Cel7D for studying wood cell wall ultrastructure. Biotechnol Lett 25:553–558

    Article  CAS  PubMed  Google Scholar 

  16. McCartney L, Gilbert HJ, Bolam DN, Boraston AB, Knox JP (2004) Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers. Anal Biochem 326:49–54

    Article  CAS  PubMed  Google Scholar 

  17. Tomme P, Boraston A, McLean B, Kormos J, Creagh AL, Sturch K et al (1998) Characterization and affinity applications of cellulose-binding. J Chromatogr 715:283–296

    Article  CAS  Google Scholar 

  18. Hervé C, Rogowski A, Gilbert HJ, Knox JP (2009) Enzymatic treatments reveal differential capacities for xylan recognition and degradation in primary and secondary plant cell walls. Plant J 58(3):413–422

    Article  PubMed  Google Scholar 

  19. McCartney L, Blake AW, Flint J, Bolam DN, Boraston AB, Gilbert HJ et al (2006) Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc Natl Acad Sci U S A 103(12):4765–4770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB, Gilbert HJ et al (2006 Sep) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 281:29321–29329

    Article  CAS  PubMed  Google Scholar 

  21. Mondolot L, Roussel JL, Andary C (2001) New applications for an old lignified element staining reagent. Histochem J 33(7):379–385

    Article  CAS  PubMed  Google Scholar 

  22. Sauter M, Seagull RW, Kende H (1993) Internodal elongation and orientation of cellulose microfibrils and microtubules in deepwater rice. Planta 190(3):354–362

    Article  CAS  Google Scholar 

  23. Knox JP (2012) In situ detection of cellulose with carbohydrate-binding modules. In: Methods in Enzymology, 1st edn. Elsevier Inc., Amsterdam, pp 233–245

    Google Scholar 

  24. Hoch HC, Galvani CD, Szarowski DH, Turner JN (2005) Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia 97(3):580–588

    Article  CAS  PubMed  Google Scholar 

  25. Marcus SE, Blake AW, Benians TAS, Lee KJD, Poyser C, Donaldson L et al (2010 Oct) Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant J 64:191–203

    Article  CAS  PubMed  Google Scholar 

  26. Ordaz-Ortiz JJ, Marcus SE, Knox PJ (2009) Cell wall microstructure analysis implicates hemicellulose polysaccharides in cell adhesion in tomato fruit pericarp parenchyma. Mol Plant 2(5):910–921

    Article  CAS  PubMed  Google Scholar 

  27. Lamed R, Setter E, Bayer EA (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156(2):828–836

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shoham Y, Lamed R, Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7(7):275–281

    Article  CAS  PubMed  Google Scholar 

  29. Leroux O, Leroux F, Bagniewska-Zadworna A, Knox JP, Claeys M, Bals S et al (2011) Ultrastructure and composition of cell wall appositions in the roots of Asplenium (Polypodiales). Micron 42(8):863–870

    Article  CAS  PubMed  Google Scholar 

  30. Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP (2010) Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci U S A 107(34):15293–15298

    Article  PubMed  PubMed Central  Google Scholar 

  31. Matos DA, Whitney IP, Harrington MJ, Hazen SP (2013) Cell walls and the developmental anatomy of the Brachypodium distachyon stem internode. PLoS One 8(11):1–9

    Google Scholar 

  32. Moller I, Sørensen I, Bernal AJ, Blaukopf C, Lee K, Øbro J et al (2007) High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant J 50:1118–1128

    Google Scholar 

  33. Zhang M, Wang B, Xu B (2013) Measurements of single molecular affinity interactions between carbohydrate-binding modules and crystalline cellulose fibrils. Phys Chem Chem Phys 15:6508–6515

    Article  CAS  PubMed  Google Scholar 

  34. Bertrand I, Chabbert B, Kurek B, Recous S (2006) Can the biochemical features and histology of wheat residues explain their decomposition in soil? Plant and Soil 281(1–2):291–307

    Article  CAS  Google Scholar 

  35. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  36. Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004 Apr) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derive. Plant J 38:131–141

    Article  CAS  PubMed  Google Scholar 

  37. Ruzin BSE (1999) Plant microtechnique and microscopy. Oxford Univ Press, Oxford

    Google Scholar 

  38. Francoz E, Ranocha P, Pernot C, Le Ru A, Pacquit V, Dunand C et al (2016) Complementarity of medium- throughput in situ RNA hybridization and tissue-specific transcriptomics : case study of Arabidopsis seed development kinetics. Sci Rep 6:24644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge Alain Jauneau and Aurelie Le Ru for technical assistance on Nanozoomer RS provided by the TRI-genotoul facility (http://trigenotoul.com/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Y. Montanier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Badruna, L., Burlat, V., Montanier, C.Y. (2017). CBMs as Probes to Explore Plant Cell Wall Heterogeneity Using Immunocytochemistry. In: Abbott, D., Lammerts van Bueren, A. (eds) Protein-Carbohydrate Interactions. Methods in Molecular Biology, vol 1588. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6899-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6899-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6898-5

  • Online ISBN: 978-1-4939-6899-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics