Skip to main content

Droplet Microfluidic Device Fabrication and Use for Isothermal Amplification and Detection of MicroRNA

  • Protocol
  • First Online:
MicroRNA Detection and Target Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1580))

Abstract

Droplet microfluidics combined with the isothermal circular strand displacement polymerization (ICSDP) represents a powerful new technique to detect both single-stranded DNA and microRNA sequences. The method here described helps in overcoming some drawbacks of the lately introduced droplet polymerase chain reaction (PCR) amplification when implemented in microfluidic devices. The method also allows the detection of nanoliter droplets of nucleic acids sequences solutions, with a particular attention to microRNA sequences that are detected at the picomolar level. The integration of the ICSDP amplification protocol in droplet microfluidic devices reduces the time of analysis and the amount of sample required. In addition, there is also the possibility to design parallel analyses to be integrated in portable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schneider T, Kreutz J, Chiu DT (2013) The potential impact of droplet microfluidics in biology. Anal Chem 85:3476–3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spoto G, Corradini R (2012) Detection of non-amplified genomic DNA. Springer, Verlag

    Book  Google Scholar 

  3. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10:1003–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pinto AJ, Raskin L (2012) PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One 7:e43093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Craw P, Balachandran W (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12:2469–2486

    Article  CAS  PubMed  Google Scholar 

  6. Asiello PJ, Baeumner AJ (2011) Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 11:1420–1430

    Article  CAS  PubMed  Google Scholar 

  7. Zanoli LM, Spoto G (2013) Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. Biosensors 3:18–43

    Article  CAS  PubMed  Google Scholar 

  8. Kim J, Easley CJ (2011) Isothermal DNA amplification in bioanalysis: strategies and applications. Bioanalysis 3:227–239

    Article  CAS  PubMed  Google Scholar 

  9. Guo Q, Yang X, Wang K, Tan W, Li W, Tang H, Li H (2009) Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. Nucleic Acids Res 37(3):e20

    Article  PubMed  PubMed Central  Google Scholar 

  10. D’Agata R, Corradini R, Ferretti C, Zanoli L, Gatti M, Marchelli R, Spoto G (2010) Ultrasensitive detection of non-amplified genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging. Biosens Bioelectron 25:2095–2100

    Article  PubMed  Google Scholar 

  11. Giuffrida MC, Zanoli LM, D’Agata R, Finotti A, Gambari R, Spoto G (2015) Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices. Anal Bioanal Chem 407(6):1533–1543

    Article  CAS  PubMed  Google Scholar 

  12. Nana-Sinkam SP, Croce CM (2013) Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 93:98–104

    Article  CAS  PubMed  Google Scholar 

  13. Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113:6207–6233

    Article  CAS  PubMed  Google Scholar 

  14. Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148:1172–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zampetaki A, Mayr M (2012) MicroRNAs in vascular and metabolic disease. Circ Res 110:508–522

    Article  CAS  PubMed  Google Scholar 

  16. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tzimagiorgis G, Michailidou EZ, Kritis A, Markopoulos AK, Kouidou S (2011) Recovering circulating extracellular or cell-free RNA from bodily fluids. Cancer Epidemiol 35:580–589

    Article  CAS  PubMed  Google Scholar 

  18. Yan L, Yan Y, Pei L, Wei W, Zhao J (2014) A G-quadruplex DNA-based, label-free and ultrasensitive strategy for microRNA detection. Sci Rep 4:7400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D’Agata R, Breveglieri G, Zanoli LM, Borgatti M, Spoto G, Gambari R (2011) Direct detection of point mutations in non-amplified human genomic DNA. Anal Chem 83:8711–8717

    Article  PubMed  Google Scholar 

  20. D’Agata R, Spoto G (2013) Surface plasmon resonance imaging for nucleic acid detection. Anal Bioanal Chem 405:573–584

    Article  PubMed  Google Scholar 

  21. Zanoli LM, D’Agata R, Spoto G (2012) Functionalized gold nanoparticles for the ultrasensitive DNA detection. Anal Bioanal Chem 402:1759–1771

    Article  CAS  PubMed  Google Scholar 

  22. Spoto G, Minunni M (2012) Surface plasmon resonance imaging: what next? J Phys Chem Lett 3:2682–2691

    Article  CAS  PubMed  Google Scholar 

  23. Grasso G, D’Agata R, Zanoli L, Spoto G (2009) Microfluidic networks for surface plasmon resonance imaging real-time kinetics experiments. Microchem J 93:82–86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MIUR (PRIN 20093N774P) and Ministry of Health, Italy (n. 098/GR-2009-1596647), are acknowledged for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Spoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Giuffrida, M.C., D’Agata, R., Spoto, G. (2017). Droplet Microfluidic Device Fabrication and Use for Isothermal Amplification and Detection of MicroRNA. In: Dalmay, T. (eds) MicroRNA Detection and Target Identification. Methods in Molecular Biology, vol 1580. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6866-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6866-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6864-0

  • Online ISBN: 978-1-4939-6866-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics