Skip to main content

Pedigree-Defined Haplotypes and Their Applications to Genetic Studies

  • Protocol
  • First Online:
Haplotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1551))

Abstract

A haplotype is a string of nucleotides or alleles at nearby loci on one chromosome, usually inherited as a unit. Within the major histocompatibility complex (MHC) region on human chromosome 6p, independent population studies of multiple families have identified conserved extended haplotypes (CEHs) that segregate as long stretches (≥1 megabase) of essentially identical DNA sequence at relatively high (≥0.5 %) population frequency (“genetic fixity”). CEHs were first identified through segregation analysis in the early 1980s. In European Caucasian populations, the most frequent 30 CEHs account for at least one-third of all MHC haplotypes. These CEHs provide all of the known individual MHC susceptibility and protective genetic markers within those populations for several complex genetic diseases. Haplotypes are rigorously determined directly by sequencing single chromosomes or by Mendelian segregation analysis using families with informative genotypes. Four parental haplotypes are assigned unambiguously using genotypes from the two parents and from two of their haploidentical (to each other) children. However, the most common current technique to phase haplotypes is probabilistic statistical imputation, using unrelated subjects. Such probabilistic techniques have failed to detect CEHs and are thus of questionable value in identifying long-range haplotype structure and, consequently, genetic structure–function relationships. Finally, with haplotypes rigorously defined, association studies can determine frequencies of alleles among unrelated patient haplotypes vs. those among only unaffected family members (i.e., control alleles/haplotypes). Such studies reduce, as much as possible, the confounding effects of population stratification common to all genetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ceppellini R, Curtoni E, Mattiuz P, Miggiano V, Seudelder G, Serra A et al (1967) Genetics of leukocyte antigens: a family study of segregation and linkage. In: Curtoni E, Mattiuz P, Tosi R (eds) Histocompatibility testing. Munksgaard, Copenhagen, pp 149–185

    Google Scholar 

  2. Glusman G, Cox HC, Roach JC (2014) Whole-genome haplotyping approaches and genomic medicine. Genome Med 6:73–88

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schulte PA (1987) Simultaneous assessment of genetic and occupational risk factors. J Occup Med 29:884–891

    CAS  PubMed  Google Scholar 

  4. Svejgaard A, Platz P, Ryder LP (1981) Insulin dependent diabetes mellitus. In: Terasaki PI (ed) Histocompatibility testing 1980. UCLA Tissue Typing Laboratory, Los Angeles, pp 638–656

    Google Scholar 

  5. Ludwig H, Polymenidis Z, Granditsch Z, Wick G (1973) [Association of HL-A1 and HL-A8 with childhood celiac disease]. Z Immunitätsforsch Exp Klin Immunol 146:158–167

    CAS  PubMed  Google Scholar 

  6. McDevitt HO, Bodmer WF (1974) HL-A, immune-response genes, and disease. Lancet 1(7869):1269–1275

    Article  CAS  PubMed  Google Scholar 

  7. Park MS, Terasaki PI, Ahmed AR, Tiwari JL (1979) HLA-DRw4 in 91% of Jewish pemphigus vulgaris patients. Lancet 2(8140):441–442

    Article  CAS  PubMed  Google Scholar 

  8. Hanis CL, Boerwinkle E, Chakraborty R, Ellsworth DL, Concannon P, Stirling B et al (1996) A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet 13:161–166

    Article  CAS  PubMed  Google Scholar 

  9. Spence MA, Greenberg DA, Hodge SE, Vieland VJ (2003) The emperor’s new methods. Am J Hum Genet 72:1084–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Madsen AM, Hodge SE, Ottman R (2011) Causal models for investigating complex disease: I. A primer. Hum Hered 72:54–62

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rubinstein P, Walker M, Carpenter C, Carrier C, Krassner J, Falk C et al (1981) Genetics of HLA disease associations: the use of the haplotype relative risk (HRR) and the “haplo-delta” (Dh) estimates in juvenile diabetes from three racial groups. Hum Immunol 3:384 (abstr)

    Article  Google Scholar 

  12. Raum D, Awdeh Z, Yunis EJ, Alper CA, Gabbay KH (1984) Extended major histocompatibility complex haplotypes in type I diabetes mellitus. J Clin Invest 74:449–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Onengut-Gumuscu S, Concannon P (2006) A haplotype-based analysis of the PTPN22 locus in type 1 diabetes. Diabetes 55:2883–2889

    Article  CAS  PubMed  Google Scholar 

  14. Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7:277–318

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ott J (1999) Analysis of human genetic linkage. Johns Hopkins University Press, Baltimore

    Google Scholar 

  16. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting results. Nat Genet 11:241–247

    Article  CAS  PubMed  Google Scholar 

  17. Concannon P, Chen WM, Julier C, Morahan G, Akolkar B, Erlich HA et al (2009) Genome-wide scan for linkage to type 1 diabetes in 2,496 families from the Type 1 Diabetes Genetics Consortium. Diabetes 58:1018–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morahan G, Mehta M, James I, Wei-Min C, Akolkar B, Erlich HA et al (2011) Tests for genetic interactions in type 1 diabetes. Linkage and stratification analyses of 4,422 affected sib-pairs. Diabetes 60:1030–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Alper CA, Larsen CE, Dubey DP, Awdeh ZL, Fici DA, Yunis EJ (2006) The haplotype structure of the human major histocompatibility complex. Hum Immunol 67:73–84

    Article  CAS  PubMed  Google Scholar 

  21. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  CAS  PubMed  Google Scholar 

  22. Awdeh ZL, Raum D, Yunis EJ, Alper CA (1983) Extended HLA/complement allele haplotypes: evidence for T/t-like complex in man. Proc Natl Acad Sci U S A 80:259–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Degli-Esposti MA, Leaver AL, Christiansen FT, Witt CS, Abraham LJ, Dawkins RL (1992) Ancestral haplotypes: conserved population MHC haplotypes. Hum Immunol 34:242–252

    Article  CAS  PubMed  Google Scholar 

  24. Smith WP, Vu Q, Li SS, Hansen JA, Zhao LP, Geraghty DE (2006) Toward understanding MHC disease associations: partial resequencing of 46 distinct HLA haplotypes. Genomics 87:561–571

    Article  CAS  PubMed  Google Scholar 

  25. Bilbao JR, Calvo B, Costaño L, Aransay AM, Martin-Pagola A, Perez de Nanclares G et al (2006) Conserved extended haplotypes discriminate HLA-DR3-homozygous Basque patients with type 1 diabetes mellitus and celiac disease. Genes Immun 7:550–554

    Article  CAS  PubMed  Google Scholar 

  26. Aly T, Eller E, Ede A, Gowan K, Babu SR, Erlich HA et al (2006) Multi-SNP analysis of MHC region: remarkable conservation of HLA-A1-B8-DR3 haplotype. Diabetes 55:1265–1269

    Article  CAS  PubMed  Google Scholar 

  27. Szilágyi A, Bánlaki Z, Pozsonyi E, Yunis EJ, Awdeh ZL, Hossó A et al (2010) Frequent occurrence of conserved extended haplotypes (CEHs) in two Caucasian populations. Mol Immunol 47:1899–1904

    Article  PubMed  Google Scholar 

  28. Larsen CE, Alford DR, Trautwein MR, Jalloh YK, Tarnacki JL, Kunnenkeri SK et al (2014) Dominant sequences of human major histocompatibility complex conserved extended haplotypes from HLA-DQA2 to DAXX. PLoS Genet 10:e1004637

    Article  PubMed  PubMed Central  Google Scholar 

  29. Alper CA, Raum D, Karp S, Awdeh ZL, Yunis EJ (1983) Serum complement ‘supergenes’ of the major histocompatibility complex in man (complotypes). Vox Sang 45:62–67

    Article  CAS  PubMed  Google Scholar 

  30. Horton R, Gibson R, Coggill P, Miretti M, Allcock RJ, Almeida J et al (2008) Variation analysis and gene annotation of eight MHC haplotypes: the MHC haplotype project. Immunogenetics 60:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. (1968) Nomenclature for factors of the HL-A system. Bull World Health Organ 39:483–486

    Google Scholar 

  32. Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SGE (2015) The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res 43(D1):D423–D431

    Article  PubMed  Google Scholar 

  33. Walsh EC, Mather KA, Schaffner SF, Farwell L, Daly MJ, Patterson N et al (2003) An integrated map of the human major histocompatibility complex. Am J Hum Genet 73:580–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yunis EJ, Larsen CE, Fernandez-Vina M, Awdeh ZL, Romero T et al (2003) Inheritable variable sizes of DNA stretches in the human MHC: conserved extended haplotypes and their fragments or blocks. Tissue Antigens 62:1–20

    Article  CAS  PubMed  Google Scholar 

  35. Williamson JF, McLure CA, Baird PN, Male D, Millman J, Lawley B et al (2008) Normal sequence elements define ancestral haplotypes of the region encompassing complement factor H. Hum Immunol 69:207–219

    Article  CAS  PubMed  Google Scholar 

  36. Allcock RJ, Atrazhev AM, Beck S, de Jong PJ, Elliott JF, Forbes S et al (2002) The MHC haplotyping project: a resource for HLA-linked association studies. Tissue Antigens 5:520–521

    Article  Google Scholar 

  37. Stewart CA, Horton R, Allcock RJ, Ashurst JL, Atrazhev AM, Coggill P et al (2004) Complete MHC haplotype sequencing for common disease gene mapping. Genome Res 14:1176–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Traherne JA, Horton R, Roberts AN, Miretti MM, Hurles ME, Stewart CA et al (2006) Genetic analysis of completely sequenced disease-associated MHC haplotypes identifies shuffling of segments in recent human history. PLoS Genet 2:e9

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kagale S, Koh C, Clarke WE, Bollina V, Parkin IA, Sharpe AG (2016) Analysis of genotyping-by-sequencing (GBS) data. Methods Mol Biol 1374:269–284

    Article  PubMed  Google Scholar 

  40. Amini S, Pushkarev D, Christiansen L, Kostem E, Royce T, Turk C et al (2014) Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing. Nat Genet 46:1343–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Snyder MW, Adey A, Kitzman JO, Shendure J (2015) Haplotype-resolved genome sequencing: experimental methods and applications. Nat Rev Genet 16:344–358

    Article  CAS  PubMed  Google Scholar 

  42. Rubinstein P, Suciu-Foca N, Nicholson JF (1976) Genetics of juvenile diabetes mellitus. A recessive gene closely linked to HLA-D and with 50 per cent penetrance. N Engl J Med 297:1036–1040

    Article  Google Scholar 

  43. Raum D, Awdeh Z, Alper CA (1981) BF types and the mode of inheritance of insulin-dependent diabetes mellitus (IDDM). Immunogenetics 12:59–74

    Article  CAS  PubMed  Google Scholar 

  44. Rubinstein P, Walker M, Mollen N, Carpenter C, Beckerman S, Suciu-Foca N et al (1990) No excess of DR*3/4 in Ashkenazi Jewish or Hispanic IDDM patients. Diabetes 39:1138–1143

    Article  CAS  PubMed  Google Scholar 

  45. Boehm BO, Schifferdecker E, Rosak C, Kuehnl P, Driesel AJ, Schöffling K (1990) The HLA-DR4-associated DQw8 allele is confined to HLA-DR3/DR4 heterozygous type 1 (insulin-dependent) diabetics. Tissue Antigens 36:81–82

    Article  CAS  PubMed  Google Scholar 

  46. Rotter JI, Anderson CE, Rubin R, Congleton JE, Terasaki PI, Rimoin DL (1983) HLA genotypic study of insulin-dependent diabetes: the excess of DR3/DR4 heterozygotes allows rejection of the recessive hypothesis. Diabetes 32:169–174

    Article  CAS  PubMed  Google Scholar 

  47. Awdeh ZL, Alper CA (2005) Mendelian inheritance of polygenic diseases: a hypothetical basis for increasing incidence. Med Hypotheses 64:495–498

    Article  CAS  PubMed  Google Scholar 

  48. Awdeh ZL, Yunis EJ, Audeh MJ, Fici D, Pugliese A, Larsen CE et al (2006) A genetic explanation for the rising incidence of type 1 diabetes, a polygenic disease. J Autoimmun 27:174–181

    Article  CAS  PubMed  Google Scholar 

  49. Larsen CE, Alper CA (2004) The genetics of HLA-associated disease. Curr Opin Immunol 16:660–667

    Article  CAS  PubMed  Google Scholar 

  50. Simon M, Bourel M, Fauchet R, Genetet B (1976) Association of HLA-A3 and B14 antigens with idiopathic haemochromatosis. Gut 17:332–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408

    Article  CAS  PubMed  Google Scholar 

  52. Alper CA, Fleischnick E, Awdeh Z, Katz AJ, Yunis EJ (1987) Extended major histocompatibility complex haplotypes in patients with gluten-sensitive enteropathy. J Clin Invest 79:251–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahmed AR, Yunis JJ, Marcus-Bagley D, Yunis EJ, Salazar M, Katz AJ et al (1993) Major histocompatibility complex susceptibility genes for dermatitis herpetiformis compared with those for gluten-sensitive enteropathy. J Exp Med 178:2067–2075

    Article  CAS  PubMed  Google Scholar 

  54. Greenberg DA, Hodge SE, Rotter JI (1982) Evidence for recessive and against dominant inheritance at the HLA-“linked” locus in coeliac disease. Am J Hum Genet 34:263–277

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Thomson G, Bodmer W (1977) The genetic analysis of HLA and disease associations. In: Dausset J, Svejgaard A (eds) HLA and disease. Munksgaard, Copenhagen, pp 84–93

    Google Scholar 

  56. Ahmed AR, Mohimen A, Yunis EJ, Mirza NM, Kumar V, Beutner EH et al (1993) Linkage of pemphigus vulgaris antibody to the major histocompatibility complex in healthy relatives of patients. J Exp Med 177:419–424

    Article  CAS  PubMed  Google Scholar 

  57. Reveille JD (2006) Major histocompatibility genes and ankylosing spondylitis. Best Pract Res Clin Rheumatol 20:601–609

    Article  CAS  PubMed  Google Scholar 

  58. Alper CA, Awdeh Z (2000) Incomplete penetrance of MHC susceptibility genes: prospective analysis of polygenic MHC-determined traits. Tissue Antigens 56:199–206

    Article  CAS  PubMed  Google Scholar 

  59. Van Thiel DH, Smith WI Jr, Rabin BS, Fisher SE, Lester R (1977) A syndrome of immunoglobulin A deficiency, diabetes mellitus, malabsorption, a common HLA haplotype. Immunologic and genetic studies of forty-three family members. Ann Intern Med 86:10–19

    Article  PubMed  Google Scholar 

  60. Alper CA, Marcus-Bagley D, Awdeh Z, Kruskall MS, Eisenbarth GS, Brink SJ et al (2000) Prospective analysis suggests susceptibility genes for deficiencies of IgA and several other immunoglobulins on the [HLA-B8, SC01, DR3] conserved extended haplotype. Tissue Antigens 56:207–216

    Article  CAS  PubMed  Google Scholar 

  61. Alper CA, Xu J, Cosmopoulos K, Dolinski B, Stein R, Uko G et al (2003) Immunoglobulin deficiencies and susceptibility to infection among homozygotes and heterozygotes for C2 deficiency. J Clin Immunol 23:297–305

    Article  CAS  PubMed  Google Scholar 

  62. Calvo B, Castaño L, Marcus-Bagley D, Fici DA, Awdeh Z, Alper CA (2000) The [HLA-B18, F1C30, DR3] conserved extended haplotype carries a susceptibility gene for IgD deficiency. J Clin Immunol 20:216–220

    Article  CAS  PubMed  Google Scholar 

  63. Alper CA, Husain Z, Larsen CE, Dubey DP, Stein R, Day C et al (2006) Incomplete penetrance of susceptibility genes for MHC-determined immunoglobulin deficiencies in monozygotic twins discordant for type 1 diabetes. J Autoimmun 27:89–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Redondo MJ, Yu L, Hawa M, Mackenzie T, Pyke DA, Eisenbarth GS et al (2001) Heterogeneity of type 1 diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia 44:354–362

    Article  CAS  PubMed  Google Scholar 

  65. Raffel LJ, Goodarzi MO (2013) Diabetes mellitus. In: Rimoin DL, Connor JM, Pyeritz RE, Korf BR (eds) Emery and Rimoin’s principles and practice of medical genetics, 6th edn. Churchill-Livingstone, New York, pp 1–58, Chapter 86

    Chapter  Google Scholar 

  66. Risch N (1990) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46:222–228

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Madsen AM, Ottman R, Hodge SE (2011) Causal models for investigating complex disease: II. What causal models can tell us about penetrance for additive, heterogeneity, and multiplicative two-locus models. Hum Hered 72:68–72

    Google Scholar 

  68. Thomson G (1980) A two locus model for juvenile diabetes. Ann Hum Genet 43:383–398

    Article  CAS  PubMed  Google Scholar 

  69. Alper CA, Dubey DP, Yunis EJ, Awdeh Z (2000) A simple estimate of the general population frequency of the MHC susceptibility gene for autoimmune polygenic disease. Exp Clin Immunogenet 17:138–147

    Article  CAS  PubMed  Google Scholar 

  70. Florez JC, Hirschhorn J, Altshuler D (2003) The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet 4:257–291

    Article  CAS  PubMed  Google Scholar 

  71. Pociot F, Akolkar B, Concannon P, Erlich HA, Julier C et al (2010) Genetics of type 1 diabetes: what’s next? Diabetes 59:1561–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Polychronakos C, Li Q (2011) Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet 12:781–792

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chester A. Alper M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Alper, C.A., Larsen, C.E. (2017). Pedigree-Defined Haplotypes and Their Applications to Genetic Studies. In: Tiemann-Boege, I., Betancourt, A. (eds) Haplotyping. Methods in Molecular Biology, vol 1551. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6750-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6750-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6748-3

  • Online ISBN: 978-1-4939-6750-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics