Skip to main content

Tract Tracing and Histological Techniques

  • Protocol
  • First Online:
Lateralized Brain Functions

Part of the book series: Neuromethods ((NM,volume 122))

  • 1382 Accesses

Abstract

Since the 1970s, a multitude of studies has proven that brain asymmetries are not unique to humans, but a common feature in vertebrate and even in invertebrate species. While the majority of these studies have focused mainly on the behavioral aspect of these asymmetries, an increasing number of studies have also investigated the underlying brain structure of lateralized behavior. In this chapter, we will concentrate on summarizing studies that have applied histological methods to unravel the cellular basis of neuronal lateralization. In recent years, two methods have been of particular importance to this field. The first method, neuronal tract tracing, can be used to analyze possible asymmetries in the connectivity pattern of a given area. The second method, immunohistochemistry, has been developed to localize specific neurochemically specified components within tissue slices and has been used to identify asymmetries in number, position, or morphology of specific neuron types, or in the distribution of certain receptors. By providing a detailed description of the theoretical background, applications, required materials, as well as a troubleshooting guide for the most common problems for both methods, we would like to encourage scientists working in lateralization research to perform more studies on the anatomical basis of brain asymmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABC:

Avidin-biotin complex

CtB:

Cholera toxin B

DAB:

3,3′-Diaminobenzidine

DMSO:

Dimethyl sulfoxide

FG:

FluoroGold

GABA:

Gamma-aminobutyric acid

HIER:

Heat-induced epitope retrieval

HRP:

Horseradish peroxidase

IEG:

Immediate early gene

IHC:

Immuno histochemistry

PB:

Phosphate buffer

PBS:

Phosphate buffered saline

PFA:

Paraformaldehyde

PHA-L:

Phaseolus vulgaris Leucoagglutinin

PIER:

Protease-induced epitope retrieval

RITC:

Rhodamine B isocyanate

WGA:

Wheat Germ Agglutinin

References

  1. Rogers LJ, Vallortigara G, Andrew RJ (2013) Divided brains: the biology and behaviour of brain asymmetries. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Ströckens F, Güntürkün O, Ocklenburg S (2013) Limb preferences in non-human vertebrates. Laterality 18:536–575

    Article  PubMed  Google Scholar 

  3. Versace E, Vallortigara G (2015) Forelimb preferences in human beings and other species: multiple models for testing hypotheses on lateralization. Front Psychol 6:233

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brown C, Magat M (2011) Cerebral lateralization determines hand preferences in Australian parrots. Biol Lett 7:496–498

    Article  PubMed  PubMed Central  Google Scholar 

  5. Böye M, Güntürkün O, Vauclair J (2005) Right ear advantage for conspecific calls in adults and subadults, but not infants, California sea lions (Zalophus californianus): hemispheric specialization for communication? Eur J Neurosci 21:1727–1732

    Article  PubMed  Google Scholar 

  6. Vallortigara G, Regolin L, Pagni P (1999) Detour behaviour, imprinting and visual lateralization in the domestic chick. Brain Res Cogn Brain Res 7:307–320

    Article  CAS  PubMed  Google Scholar 

  7. Bisazza A, Sovrano VA, Vallortigara G (2001) Consistency among different tasks of left-right asymmetries in lines of fish originally selected for opposite direction of lateralization in a detour task. Neuropsychologia 39:1077–1085

    Article  CAS  PubMed  Google Scholar 

  8. Keerthipriya P, Tewari R, Vidya TN (2015) Lateralization in trunk and forefoot movements in a population of free-ranging Asian elephants (Elephas maximus). J Comp Psychol [Epub ahead of print]

    Google Scholar 

  9. Quaranta A, Siniscalchi M, Vallortigara G (2007) Asymmetric tail-wagging responses by dogs to different emotive stimuli. Curr Biol 17:R199–R201

    Article  CAS  PubMed  Google Scholar 

  10. Broca P (1866) Sur la siège de la faculté du langage articulé. Bull Soc Anthropol 6:337–399

    Google Scholar 

  11. Eberstaller O (1890) Das Stirnhirn. Urban und Schwarzenberg, Wien, Leipzig

    Google Scholar 

  12. Cunningham DJ (1892) Contribution to the surface anatomy of the cerebral hemispheres. Royal Irish Academy, Dublin

    Google Scholar 

  13. Cunningham DJ (1902) Right-handedness and left-brainedness. J Anthropol Inst G B Irel 32:273–296

    Google Scholar 

  14. von Economo C, Horn L (1930) Über Windungsrelief, Masse und Rindenarchitektonik der Supratemporalfläche, ihre indivi-duellen und ihre Seitenunterschiede. Z Ges Neurol Psychiatr 130:687–757

    Google Scholar 

  15. Scheibel AB, Paul LA, Fried I, Forsythe AB, Tomiyasu U, Wechsler A, Kao A, Slotnick J (1985) Dendritic organization of the anterior speech area. Exp Neurol 87:109–117

    Article  CAS  PubMed  Google Scholar 

  16. Seldon HL (1981) Structure of human auditory cortex: I. Cytoarchitectonics and dendritic distribution. Brain Res 229:277–294

    Article  CAS  PubMed  Google Scholar 

  17. Seldon HL (1981) Structure of human auditory cortex: II. Axon distributions and morphological correlates of speech perceptions. Brain Res 229:295–310

    Article  CAS  PubMed  Google Scholar 

  18. Seldon HL (1982) Structure of human auditory cortex: III. Statistical analysis of dendritic trees. Brain Res 249:211–221

    Article  CAS  PubMed  Google Scholar 

  19. Vallortigara G, Chiandetti C, Sovrano VA (2011) Brain asymmetry (animal). WIREs Cogn Sci 2:146–157

    Article  Google Scholar 

  20. Köhler A, von Rohr M (1904) Eine mikrophotographische Einrichtung für ultraviolettes Licht. Z Instnun Kde 24:341–349

    Google Scholar 

  21. Ruska E (1933) Die elektronenoptische Abbildung elektronenbestrahlter Oberflächen. Z Phys 83:492–497

    Article  CAS  Google Scholar 

  22. Zernike F (1935) Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung. Z Tech Phys 16:454–457

    Google Scholar 

  23. Minsky M (1988) Memoir on inventing the confocal scanning microscope. Scanning 10:128–138

    Article  Google Scholar 

  24. Wada J, Rasmussen T (1960) Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance. J Neurosurg 106:1117–1133

    Article  Google Scholar 

  25. Nottebohm F (1971) Neural lateralization of vocal control in a passerine bird: I. Song. J Exp Zool 177:229–261

    Article  CAS  PubMed  Google Scholar 

  26. Rogers LJ (1978) Functional lateralization in the chicken fore-brain revealed by cycloheximidine treatment. In: XVII international congress of ornithology, pp 653–659

    Google Scholar 

  27. Rogers LJ, Anson JM (1979) Lateralisation of function in the chicken fore-brain. Pharmacol Biochem Behav 10:679–686

    Article  CAS  PubMed  Google Scholar 

  28. Ocklenburg S, Ströckens F, Güntürkün O (2013) Lateralisation of conspecific vocalisation in non-human vertebrates. Laterality 18:1–31

    Article  PubMed  Google Scholar 

  29. Rogers LJ, Sink HS (1988) Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure. Exp Brain Res 70:378–384

    Article  CAS  PubMed  Google Scholar 

  30. Rogers LJ, Bolden SW (1991) Light-dependent development and asymmetry of visual projections. Neurosci Lett 121:63–67

    Article  CAS  PubMed  Google Scholar 

  31. Manns M, Güntürkün O (2003) Light experience induces differential asymmetry pattern of GABA- and parvalbumin-positive cells in the pigeon’s visual midbrain. J Chem Neuroanat 25:249–259

    Article  CAS  PubMed  Google Scholar 

  32. George I, Hara E, Hessler NA (2006) Behavioral and neural lateralization of vision in courtship singing of the zebra finch. J Neurobiol 66:1164–1173

    Article  PubMed  Google Scholar 

  33. Hami J, Kheradmand H, Haghir H (2014) Gender differences and lateralization in the distribution pattern of insulin-like growth factor-1 receptor in developing rat hippocampus: an immunohistochemical study. Cell Mol Neurobiol 34:215–226

    Article  CAS  PubMed  Google Scholar 

  34. deCarvalho TN, Subedi A, Rock J, Harfe BD, Thisse C, Thisse B, Halpern ME, Hong E (2014) Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish. Genesis 52:636–655

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sherwood CC, Raghanti MA, Wenstrup JJ (2007) Is humanlike cytoarchitectural asymmetry present in another species with complex social vocalization? A stereologic analysis of mustached bat auditory cortex. Brain Res 1045:164–174

    Article  CAS  Google Scholar 

  36. Bezchlibnyk YB, Sun X, Wang JF, MacQueen GM, McEwen BS, Young LT (2007) Neuron somal size is decreased in the lateral amygdalar nucleus of subjects with bipolar disorder. J Psychiatry Neurosci 32:203–210

    PubMed  PubMed Central  Google Scholar 

  37. Arpini M, Menezes IC, Dall'Oglio A, Rasia-Filho AA (2010) The density of Golgi-impregnated dendritic spines from adult rat posterodorsal medial amygdala neurons displays no evidence of hemispheric or dorsal/ventral differences. Neurosci Lett 469:209–213

    Article  CAS  PubMed  Google Scholar 

  38. Ströckens F, Freund N, Manns M, Ocklenburg S, Güntürkün O (2013) Visual asymmetries and the ascending thalamofugal pathway in pigeons. Brain Struct Funct 218:1197–1209

    Article  PubMed  Google Scholar 

  39. Patzke N, Manns M, Güntürkün O (2011) Telencephalic organization of the olfactory system in homing pigeons (Columba livia). Neuroscience 194:53–61

    Article  CAS  PubMed  Google Scholar 

  40. Novikova L, Novikov L, Kellerth JO (1997) Persistent neuronal labeling by retrograde fluorescent tracers: a comparison between Fast Blue, Fluoro-Gold and various dextran conjugates. J Neurosci Methods 74:9–15

    Article  CAS  PubMed  Google Scholar 

  41. Letzner S, Simon A, Güntürkün O (2015) Connectivity and neurochemistry of the commissura anterior of the pigeon (Columba livia). J Comp Neurol [Epub ahead of print]

    Google Scholar 

  42. Hendricks M, Jesuthasan S (2007) Asymmetric innervation of the habenula in zebrafish. J Comp Neurol 502:611–619

    Article  PubMed  Google Scholar 

  43. Güntürkün O, Melsbach G, Hörster W, Daniel S (1993) Different sets of afferents are demonstrated by the fluorescent tracers fast blue and rhodamine. J Neurosci Methods 49:103–111

    Article  PubMed  Google Scholar 

  44. Köbbert C, Apps R, Bechmann I, Lanciego JL, Mey J, Thanos S (2000) Current concepts in neuroanatomical tracing. Prog Neurobiol 62:327–351

    Article  PubMed  Google Scholar 

  45. Paton JA, Manogue KR, Nottebohm F (1981) Bilateral organization of the vocal control pathway in the budgerigar, Melopsittacus undulatus. J Neurosci 1:1279–1288

    CAS  PubMed  Google Scholar 

  46. Wouterlood FG, Groenewegen HJ (1985) Neuroanatomical tracing by use of Phaseolus vulgaris-leucoagglutinin (PHA-L): electron microscopy of PHA-L-filled neuronal somata, dendrites, axons and axon terminals. Brain Res 326:188–191

    Article  CAS  PubMed  Google Scholar 

  47. Moon EA, Goodchild AK, Pilowsky PM (2002) Lateralisation of projections from the rostral ventrolateral medulla to sympathetic preganglionic neurons in the rat. Brain Res 929:181–190

    Article  CAS  PubMed  Google Scholar 

  48. Rogers LJ, Deng C (1999) Light experience and lateralization of the two visual pathways in the chick. Behav Brain Res 98:277–287

    Article  CAS  PubMed  Google Scholar 

  49. Marfurt CF (1988) Sympathetic innervation of the rat cornea as demonstrated by the retrograde and anterograde transport of horseradish peroxidase-wheat germ agglutinin. J Comp Neurol 268:147–160

    Article  CAS  PubMed  Google Scholar 

  50. Oztas E (2003) Neuronal tracing. Neuroanatomy 2:2–5

    Google Scholar 

  51. Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 103:63–71

    Article  CAS  PubMed  Google Scholar 

  52. Callaway EM (2008) Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 18:617–623

    Article  CAS  PubMed  Google Scholar 

  53. Ugolini G (2010) Advances in viral transneuronal tracing. J Neurosci Methods 194:2–20

    Article  PubMed  Google Scholar 

  54. Nassi JJ, Cepko CL, Born RT, Beier KT (2015) Neuroanatomy goes viral! Front Neuroanat 9:80

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rogers LJ (2002) Advantages and disadvantages of lateralization. In: Rogers LJ, Andrew R (eds) Comparative vertebrate lateralization. Cambridge University Press, Cambridge, pp 126–154

    Chapter  Google Scholar 

  56. Valenti A, Sovrano VA, Zucca P, Vallortigara G (2003) Visual lateralisation in quails (Coturnix coturnix). Laterality 8:67–78

    Article  PubMed  Google Scholar 

  57. Manns M, Güntürkün O (2009) Dual coding of visual asymmetries in the pigeon brain: the interaction of bottom-up and top-down systems. Exp Brain Res 199:323–332

    Article  PubMed  Google Scholar 

  58. Rogers LJ (1982) Light experience and asymmetry of brain function in chickens. Nature 297:223–225

    Article  CAS  PubMed  Google Scholar 

  59. Skiba M, Diekamp B, Güntürkün O (2002) Embryonic light stimulation induces different asymmetries in visuoperceptual and visuomotor pathways of pigeons. Behav Brain Res 134:149–156

    Article  PubMed  Google Scholar 

  60. Güntürkün O (2005) How asymmetry in animals starts. Eur Rev 13:105–118

    Article  Google Scholar 

  61. Güntürkün O, Hellmann B, Melsbach G, Prior H (1998) Asymmetries of representation in the visual system of pigeons. NeuroReport 9:4127–4130

    Article  PubMed  Google Scholar 

  62. Manns M, Ströckens F (2014) Functional and structural comparison of visual lateralization in birds—similar but still different. Front Psychol 5:206

    Article  PubMed  PubMed Central  Google Scholar 

  63. Galuske RA, Schlote W, Bratzke H, Singer W (2000) Interhemispheric asymmetries of the modular structure in human temporal cortex. Science 289:1946–1949

    Article  CAS  PubMed  Google Scholar 

  64. Sovrano VA, Andrew RJ (2006) Eye use during viewing a reflection: behavioural lateralisation in zebrafish larvae. Behav Brain Res 167:226–231

    Article  CAS  PubMed  Google Scholar 

  65. Facchin L, Argenton F, Bisazza A (2009) Lines of Danio rerio selected for opposite behavioural lateralization show differences in anatomical left-right asymmetries. Behav Brain Res 197:157–165

    Article  PubMed  Google Scholar 

  66. Dadda M, Domenichini A, Piffer L, Argenton F, Bisazza A (2010) Early differences in epithalamic left-right asymmetry influence lateralization and personality of adult zebrafish. Behav Brain Res 206:208–215

    Article  PubMed  Google Scholar 

  67. Roussigne M, Blader P, Wilson SW (2012) Breaking symmetry: the zebrafish as a model for understanding left-right asymmetry in the developing brain. Dev Neurobiol 72:269–281

    Article  PubMed  Google Scholar 

  68. Karten HJ, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon (Columba livia). The Johns Hopkins University Press, Baltimore

    Google Scholar 

  69. Schofield BR (2008) Retrograde axonal tracing with fluorescent markers. Curr Protoc Neurosci. Chapter 1: Unit 1.17

    Google Scholar 

  70. Beier K, Cepko C (2012) Viral tracing of genetically defined neural circuitry. J Vis Exp. pii: 4253

    Google Scholar 

  71. Stichel CC, Müller HW (1998) The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res 294:1–9

    Article  CAS  PubMed  Google Scholar 

  72. Notman R, Noro M, O'Malley B, Anwar J (2006) Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. J Am Chem Soc 128:13982–13983

    Article  CAS  PubMed  Google Scholar 

  73. Mulisch M, Welsch U (eds) (2010) Romeis—Mikroskopische Technik. Springer, Heidelberg

    Google Scholar 

  74. Kuypers HG, Bentivoglio M, Catsman-Berrevoets CE, Bharos AT (1980) Double retrograde neuronal labeling through divergent axon collaterals, using two fluorescent tracers with the same excitation wavelength which label different features of the cell. Exp Brain Res 40:383–392

    Article  CAS  PubMed  Google Scholar 

  75. Pilati N, Barker M, Panteleimonitis S, Donga R, Hamann M (2008) A rapid method combining Golgi and Nissl staining to study neuronal morphology and cytoarchitecture. J Histochem Cytochem 56:539–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Coons AH, Creech HJ, Jones RN (1941) Immunological properties of an antibody containing a fluorescence group. Proc Soc Exp Biol Med 47:200–202

    Article  CAS  Google Scholar 

  77. Marrack J (1934) Nature of antibodies. Nature 133:292–293

    Article  CAS  Google Scholar 

  78. Coons AH, Creech HJ, Jones RN, Berliner E (1942) The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J Immunol 45:159–170

    CAS  Google Scholar 

  79. Brandtzaeg P (1998) The increasing power of immunohistochemistry and immunocytochemistry. J Immunol Methods 216:49–67

    Article  CAS  PubMed  Google Scholar 

  80. deMatos LL, Trufelli DC, de Matos MG, da Silva Pinhal MA (2010) Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomark Insights 5:9–20

    Google Scholar 

  81. Ramos-Vara JA (2005) Technical aspects of immunohistochemistry. Vet Pathol 42:405–426

    Article  CAS  PubMed  Google Scholar 

  82. Manns M, Freund N, Güntürkün O (2008) Development of the diencephalic relay structures of the visual thalamofugal system in pigeons. Brain Res Bull 75:424–427

    Article  CAS  PubMed  Google Scholar 

  83. Legent K, Tissot N, Guichet A (2015) Visualizing microtubule networks during drosophila oogenesis using fixed and live imaging. Methods Mol Biol 1328:99–112

    Article  CAS  PubMed  Google Scholar 

  84. Ramos-Vara JA, Miller MA (2014) When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry—the red, brown, and blue technique. Vet Pathol 51:42–87

    Article  CAS  PubMed  Google Scholar 

  85. Ritter AM (2000) Polyclonal and monoclonal antibodies. In: George AJT, Urch CE (Eds.), Methods in molecular medicine, vol 40: Diagnostic and therapeutic antibodies. Humana Press Inc., Totowa

    Google Scholar 

  86. Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F (2005) Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J 46:258–268

    Article  CAS  PubMed  Google Scholar 

  87. Schellingerhout D, LeRoux LG, Hobbs BP, Bredow S (2012) Impairment of retrograde neuronal transport in oxaliplatin-induced neuropathy demonstrated by molecular imaging. PLoS One 7:e45776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Coons AH, Leduc EH, Connolly JM (1955) Studies on antibody production: I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med 102:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Buchwalow I, Samoilova V, Boecker W, Tiemann M (2011) Non-specific binding of antibodies in immunohistochemistry: fallacies and facts. Sci Rep 1:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Ströckens F, Güntürkün O (2015) Cryptochrome 1b—a possible inductor of visual lateralization in pigeons? Eur J Neurosci [Epub ahead of print]

    Google Scholar 

  91. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PaP) procedures. J Histochem Cytochem 29:577–580

    Article  CAS  PubMed  Google Scholar 

  92. van der Loos CM (2010) Chromogens in multiple immunohistochemical staining used for visual assessment and spectral imaging: the colorful future. J Histotechnol 33:31–40

    Article  Google Scholar 

  93. Manns M, Güntürkün O, Heumann R, Blöchl A (2005) Photic inhibition of TrkB/Ras activity in the pigeon’s tectum during development: impact on brain asymmetry formation. Eur J Neurosci 22:2180–2186

    Article  PubMed  Google Scholar 

  94. Manns M, Freund N, Patzke N, Güntürkün O (2007) Organization of telencephalotectal projections in pigeons: Impact for lateralized top-down control. Neuroscience 144:645–653

    Article  CAS  PubMed  Google Scholar 

  95. Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4:477–485

    Article  CAS  PubMed  Google Scholar 

  96. Long KD, Salbaum JM (1998) Evolutionary conservation of the immediate-early gene ZENK. Mol Biol Evol 15:284–292

    Article  CAS  PubMed  Google Scholar 

  97. Buchwalow I, Böcker W (2010) Immunohistochemistry: basics and methods. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  98. Fritschy JM (2008) Is my antibody-staining specific? How to deal with pitfalls of immunohistochemistry. Eur J Neurosci 28:2365–2370

    Article  PubMed  Google Scholar 

  99. Chen X, Cho DB, Yang PC (2010) Double staining immunohistochemistry. N Am J Med Sci 2:241–245

    PubMed  PubMed Central  Google Scholar 

  100. Duhamel RC, Johnson DA (1984) Use of nonfat dry milk to block nonspecific nuclear and membrane staining by avidin conjugates. J Histochem Cytochem 33:711–714

    Article  Google Scholar 

  101. Fung KM, Messing A, Lee VM, Trojanowski JQ (1992) A novel modification of the avidin-biotin complex method for immunohistochemical studies of transgenic mice with murine monoclonal antibodies. J Histochem Cytochem 40:1319–1328

    Article  CAS  PubMed  Google Scholar 

  102. Bussolati G, Leonardo E (2008) Technical pitfalls potentially affecting diagnoses in immunohistochemistry. J Clin Pathol 61:1184–1192

    Article  CAS  PubMed  Google Scholar 

  103. Thavarajah R, Mudimbaimannar VK, Elizabeth J, Rao UK, Ranganathan K (2012) Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol 16:400–405

    Article  PubMed  PubMed Central  Google Scholar 

  104. Howat WJ, Wilson BA (2014) Tissue fixation and the effect of molecular fixatives on downstream staining procedures. Methods 70:12–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Josephsen K, Smith CE, Nanci A (1999) Selective but nonspecific immunolabeling of enamel protein-associated compartments by a monoclonal antibody against vimentin. J Histochem Cytochem 47:1237–1245

    Article  CAS  PubMed  Google Scholar 

  106. Huang SN, Minassian H, More JD (1976) Application of immunofluorescent staining on paraffin sections improved by trypsin digestion. Lab Invest 35:383–390

    CAS  PubMed  Google Scholar 

  107. Shi S-R, Key ME, Kalra KR (1991) Antigen retrieval in formalin fixed, paraffin-embedded tissue: an enhancement method for immunohistochemical staining based on microwave heating of tissue sections. J Histochem Cytochem 39:741–744

    Article  CAS  PubMed  Google Scholar 

  108. Goding JW (1996) Monoclonal antibodies: principles and practice, 3rd edn. Academic, London

    Google Scholar 

  109. Li CY, Ziesmer SC, Lazcano-Villareal O (1987) Use of azide and hydrogen peroxide as an inhibitor for endogenous peroxidase in the immunoperoxidase method. J Histochem Cytochem 35:1457–1460

    Article  CAS  PubMed  Google Scholar 

  110. Clancy B, Cauller LJ (1998) Reduction of background autofluorescence in brain sections following immersion in sodium borohydride. J Neurosci Methods 83:97–102

    Article  CAS  PubMed  Google Scholar 

  111. Neumann M, Gabel D (2002) Simple method for reduction of autofluorescence in fluorescence microscopy. J Histochem Cytochem 50:437–439

    Article  CAS  PubMed  Google Scholar 

  112. Viegas MS, Martins TC, Seco F, do Carmo A (2007) An improved and cost-effective methodology for the reduction of autofluorescence in direct immunofluorescence studies on formalin-fixed paraffin-embedded tissues. Eur J Histochem 51:59–66

    CAS  PubMed  Google Scholar 

  113. Lorincz A, Nusser Z (2008) Specificity of immunoreactions: the importance of testing specificity in each method. J Neurosci 28:9083–9086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Brendon Billings, Alexis Garland, Rena Klose, Sara Letzner, Martina Manns, Sebastian Ocklenburg, Annika Simon, Martin Stacho, and John Tuff for fruitful discussions, helpful comments, and aid during acquisition of images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Ströckens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ströckens, F., Güntürkün, O. (2017). Tract Tracing and Histological Techniques. In: Rogers, L., Vallortigara, G. (eds) Lateralized Brain Functions. Neuromethods, vol 122. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6725-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6725-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6723-0

  • Online ISBN: 978-1-4939-6725-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics