Skip to main content

Advertisement

Log in

Gender Differences and Lateralization in the Distribution Pattern of Insulin-Like Growth Factor-1 Receptor in Developing Rat Hippocampus: An Immunohistochemical Study

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Numerous investigators have provided data supporting essential roles for insulin-like growth factor-I (IGF-I) in development of the brain. The aim of this study was to immunohistochemically determine the distinct regional distribution pattern of IGF-1 receptor (IGF-IR) expression in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14), with comparison between male/female and right/left hippocampi. We found an overall significant increase in distribution of IGF-IR-positive (IGF-IR+) cells in CA1 from P0 until P14. Although, no marked changes in distribution of IGF-IR+ cells in areas CA2 and CA3 were observed; IGF-IR+ cells in DG decreased until P14. The smallest number of immunoreactive cells was present in CA2 and the highest number in DG at P0. Moreover, in CA1, CA3, and DG, the number of IGF-IR+ cells was markedly higher in both sides of the hippocampus in females. Our data also showed a higher mean number of IGF-IR+ cells in the left hippocampus of female at P7. By contrast, male pups showed a significantly higher number of IGF-IR+ cells in the DG of the right hippocampus. At P14, the mean number of immunoreactive cells in CA1, CA3, and DG areas found to be significantly increased in left side of hippocampus of males, compared to females. These results indicate the existence of a differential distribution pattern of IGF-IR between left–right and male–female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left–right asymmetry in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335

    Article  CAS  PubMed  Google Scholar 

  • Anderson MF, Aberg MA, Nilsson M, Eriksson PS (2002) Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res Dev Brain Res 134(1–2):115–122

    Article  CAS  PubMed  Google Scholar 

  • Anlar B, Sullivan KA, Feldman EL (1999) Insulin-like growth factor-I and central nervous system development. Horm Metab Res 31(2–3):120–125

    Article  CAS  PubMed  Google Scholar 

  • Baron-Van Evercooren A, Olichon-Berthe C, Kowalski A, Visciano G, Van Obberghen E (1991) Expression of IGF-I and insulin receptor genes in the rat central nervous system: a developmental, regional, and cellular analysis. J Neurosci Res 28(2):244–253

    Article  CAS  PubMed  Google Scholar 

  • Baskin DG, Wilcox BJ, Figlewicz DP, Dorsa DM (1988) Insulin and insulin-like growth factors in the CNS. Trends Neurosci 11(3):107–111

    Article  CAS  PubMed  Google Scholar 

  • Bayer SA (1980a) Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol 190(1):87–114

    Article  CAS  PubMed  Google Scholar 

  • Bayer SA (1980b) Development of the hippocampal region in the rat. II. Morphogenesis during embryonic and early postnatal life. J Comp Neurol 190(1):115–134

    Article  CAS  PubMed  Google Scholar 

  • Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F (1995) Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron 14(4):717–730

    Article  CAS  PubMed  Google Scholar 

  • Bondy CA (1991) Transient IGF-I gene expression during the maturation of functionally related central projection neurons. J Neurosci 11(11):3442–3455

    CAS  PubMed  Google Scholar 

  • Bowers JM, Waddell J, McCarthy MM (2010) A developmental sex difference in hippocampal neurogenesis is mediated by endogenous oestradiol. Biol Sex Differ 1(1):8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breese CR, D’Costa A, Booze RM, Sonntag WE (1991) Distribution of insulin-like growth factor 1 (IGF-1) and 2 (IGF-2) receptors in the hippocampal formation of rats and mice. Adv Exp Med Biol 293:449–458

    Article  CAS  PubMed  Google Scholar 

  • Carro E, Torres-Aleman I (2004) The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer’s disease. Eur J Pharmacol 490(1–3):127–133

    Article  CAS  PubMed  Google Scholar 

  • Castle DJ, Murray RM (1991) The neurodevelopmental basis of sex differences in schizophrenia. Psychol Med 21(3):565–575

    Article  CAS  PubMed  Google Scholar 

  • Cooke B, Hegstrom CD, Villeneuve LS, Breedlove SM (1998) Sexual differentiation of the vertebrate brain: principles and mechanisms. Front Neuroendocrinol 19(4):323–362

    Article  CAS  PubMed  Google Scholar 

  • de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7(1):45–61

    PubMed  Google Scholar 

  • de Pablo F, de la Rosa EJ (1995) The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci 18(3):143–150

    Article  PubMed  Google Scholar 

  • DeCarolis NA, Eisch AJ (2010) Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 58(6):884–893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Ercole AJ, Ye P, Calikoglu AS, Gutierrez-Ospina G (1996) The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol 13(3):227–255

    Article  PubMed  Google Scholar 

  • D’Ercole AJ, Ye P, O’Kusky JR (2002) Mutant mouse models of insulin-like growth factor actions in the central nervous system. Neuropeptides 36(2–3):209–220

    Article  PubMed  Google Scholar 

  • Diamond MC, Murphy GM Jr, Akiyama K, Johnson RE (1982) Morphologic hippocampal asymmetry in male and female rats. Exp Neurol 76(3):553–565

    Article  CAS  PubMed  Google Scholar 

  • Diamond MC, Johnson RE, Young D, Singh SS (1983) Age-related morphologic differences in the rat cerebral cortex and hippocampus: male-female; right-left. Exp Neurol 81(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Eichenbaum H (1996) Is the rodent hippocampus just for ‘place’? Curr Opin Neurobiol 6(2):187–195

    Article  CAS  PubMed  Google Scholar 

  • Exner C, Nehrkorn B, Martin V, Huber M, Shiratori K, Rief W (2008) Sex-dependent hippocampal volume reductions in schizophrenia relate to episodic memory deficits. J Neuropsychiatr Clin Neurosci 20(2):227–230

    Article  Google Scholar 

  • Forster E, Zhao S, Frotscher M (2006) Laminating the hippocampus. Nat Rev Neurosci 7(4):259–267

    Article  PubMed  Google Scholar 

  • Foster DJ, Knierim JJ (2012) Sequence learning and the role of the hippocampus in rodent navigation. Curr Opin Neurobiol 22(2):294–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frazier JA, Hodge SM, Breeze JL, Giuliano AJ, Terry JE, Moore CM, Kennedy DN, Lopez-Larson MP, Caviness VS, Seidman LJ, Zablotsky B, Makris N (2008) Diagnostic and sex effects on limbic volumes in early-onset bipolar disorder and schizophrenia. Schizophr Bull 34(1):37–46

    Article  PubMed  Google Scholar 

  • Fuhs MC, Touretzky DS (2007) Context learning in the rodent hippocampus. Neural Comput 19(12):3173–3215

    Article  PubMed  Google Scholar 

  • Galea LA (2008) Gonadal hormone modulation of neurogenesis in the dentate gyrus of adult male and female rodents. Brain Res Rev 57(2):332–341

    Article  CAS  PubMed  Google Scholar 

  • Galea LA, Spritzer MD, Barker JM, Pawluski JL (2006) Gonadal hormone modulation of hippocampal neurogenesis in the adult. Hippocampus 16(3):225–232

    Article  CAS  PubMed  Google Scholar 

  • Giap BT, Jong CN, Ricker JH, Cullen NK, Zafonte RD (2000) The hippocampus: anatomy, pathophysiology, and regenerative capacity. J Head Trauma Rehabil 15(3):875–894

    Article  CAS  PubMed  Google Scholar 

  • Gilbert PE, Kesner RP (2002) Role of the rodent hippocampus in paired-associate learning involving associations between a stimulus and a spatial location. Behav Neurosci 116(1):63–71

    Article  PubMed  Google Scholar 

  • Goddard DR, Berry M, Butt AM (1999) In vivo actions of fibroblast growth factor-2 and insulin-like growth factor-I on oligodendrocyte development and myelination in the central nervous system. J Neurosci Res 57(1):74–85

    Article  CAS  PubMed  Google Scholar 

  • Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Møller A, Nielsen K, Nyengaard JR, Pakkenberg B et al (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96(10):857–881

    Article  CAS  PubMed  Google Scholar 

  • Hami J, Sadr-Nabavi A, Sankian M, Haghir H (2012) Sex differences and left–right asymmetries in expression of insulin and insulin-like growth factor-1 receptors in developing rat hippocampus. Brain Struct Funct 217(2):293–302

    Article  CAS  PubMed  Google Scholar 

  • Hayman LA, Fuller GN, Cavazos JE, Pfleger MJ, Meyers CA, Jackson EF (1998) The hippocampus: normal anatomy and pathology. Am J Roentgenol 171(4):1139–1146

    Article  CAS  Google Scholar 

  • Hine RJ, Das GD (1974) Neuroembryogenesis in the hippocampal formation of the rat. An autoradiographic study. Z Anat Entwickl 144(2):173–186

    Article  CAS  Google Scholar 

  • Humphrey T (1967) The development of the human hippocampal fissure. J Anat 101(Pt 4):655–676

    CAS  PubMed  Google Scholar 

  • Hussain RJ, Carpenter DO (2005) A comparison of the roles of protein kinase C in long-term potentiation in rat hippocampal areas CA1 and CA3. Cell Mol Neurobiol 25(3–4):649–661

    Article  CAS  PubMed  Google Scholar 

  • Joseph D’Ercole A, Ye P (2008) Expanding the mind: insulin-like growth factor I and brain development. Endocrinology 149(12):5958–5962

    Article  PubMed  Google Scholar 

  • Kar S, Chabot JG, Quirion R (1993) Quantitative autoradiographic localization of [125I] insulin-like growth factor I, [125I] insulin-like growth factor II, and [125I] insulin receptor binding sites in developing and adult rat brain. J Comp Neurol 333(3):375–397

    Article  CAS  PubMed  Google Scholar 

  • Knowles WD (1992) Normal anatomy and neurophysiology of the hippocampal formation. J Clin Neurophysiol 9(2):252–263

    Article  CAS  PubMed  Google Scholar 

  • Kumazawa-Manita N, Hama H, Miyawaki A, Iriki A (2013) Tool use specific adult neurogenesis and synaptogenesis in rodent (Octodon degus) hippocampus. PLoS ONE 8(3):e58649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • LeRoith D (2008) Insulin-like growth factors and the brain. Endocrinology 149(12):5951

    Article  CAS  PubMed  Google Scholar 

  • Lister JP, Tonkiss J, Blatt GJ, Kemper TL, DeBassio WA, Galler JR, Rosene DL (2006) Asymmetry of neuron numbers in the hippocampal formation of prenatally malnourished and normally nourished rats: a stereological investigation. Hippocampus 16(11):946–958

    Article  PubMed  Google Scholar 

  • Liu W, Ye P, O’Kusky JR, D’Ercole AJ (2009) Type 1 insulin-like growth factor receptor signaling is essential for the development of the hippocampal formation and dentate gyrus. J Neurosci Res 87(13):2821–2832

    Article  CAS  PubMed  Google Scholar 

  • Marks JL, Porte D Jr, Baskin DG (1991) Localization of type I insulin-like growth factor receptor messenger RNA in the adult rat brain by in situ hybridization. Mol Endocrinol 5(8):1158–1168

    Article  CAS  PubMed  Google Scholar 

  • Martin SJ, Clark RE (2007) The rodent hippocampus and spatial memory: from synapses to systems. Cell Mol Life Sci 64(4):401–431

    Article  CAS  PubMed  Google Scholar 

  • McBain CJ (2008) Differential mechanisms of transmission and plasticity at mossy fiber synapses. Prog Brain Res 169:225–240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris JA, Jordan CL, Breedlove SM (2004) Sexual differentiation of the vertebrate nervous system. Nat Neurosci 7(10):1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu R, Ikegaya Y, Matsuki N, Koyama R (2007) Neonatally born granule cells numerically dominate adult mice dentate gyrus. Neuroscience 148(3):593–598

    Article  CAS  PubMed  Google Scholar 

  • Nakae J, Kido Y, Accili D (2001) Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev 22(6):818–835

    Article  CAS  PubMed  Google Scholar 

  • Nalloor R, Bunting KM, Vazdarjanova A (2012) Encoding of emotion-paired spatial stimuli in the rodent hippocampus. Front Behav Neurosci 6:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Navarro I, Leibush B, Moon TW, Plisetskaya EM, Banos N, Mendez E, Planas JV, Gutierrez J (1999) Insulin, insulin-like growth factor-I (IGF-I) and glucagon: the evolution of their receptors. Comp Biochem Physiol B 122(2):137–153

    Article  CAS  PubMed  Google Scholar 

  • Ormerod BK, Lee TT, Galea LA (2004) Estradiol enhances neurogenesis in the dentate gyri of adult male meadow voles by increasing the survival of young granule neurons. Neuroscience 128(3):645–654

    Article  CAS  PubMed  Google Scholar 

  • Ormerod BK, Palmer TD, Caldwell MA (2008) Neurodegeneration and cell replacement. Philos Trans R Soc Lond B 363(1489):153–170

    Article  CAS  Google Scholar 

  • Pawluski JL, Brummelte S, Barha CK, Crozier TM, Galea LA (2009) Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging. Front Neuroendocrinol 30(3):343–357

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates. Elsevier, New York

    Google Scholar 

  • Perfilieva E, Risedal A, Nyberg J, Johansson BB, Eriksson PS (2001) Gender and strain influence on neurogenesis in dentate gyrus of young rats. J Cereb Blood Flow Metab 21(3):211–217

    Article  CAS  PubMed  Google Scholar 

  • Popken GJ, Hodge RD, Ye P, Zhang J, Ng W, O’Kusky JR, D’Ercole AJ (2004) In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. Eur J Neurosci 19(8):2056–2068

    Article  PubMed  Google Scholar 

  • Ragbetli MC, Aydinlioglu A, Kaplan S (2002) Sex differences and right–left asymmetries in rat hippocampal components. Int J Neurosci 112(1):81–95

    Article  PubMed  Google Scholar 

  • Ramachandra R, Thyagarajan S (2011) Atlas of the neonatal rat brain. CRC, Bosa Roca

    Book  Google Scholar 

  • Roof RL, Havens MD (1992) Testosterone improves maze performance and induces development of a male hippocampus in females. Brain Res 572(1–2):310–313

    Article  CAS  PubMed  Google Scholar 

  • Russo VC, Gluckman PD, Feldman EL, Werther GA (2005) The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 26(7):916–943

    Article  CAS  PubMed  Google Scholar 

  • Schlessinger AR, Cowan WM, Gottlieb DI (1975) An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J Comp Neurol 159(2):149–175

    Article  CAS  PubMed  Google Scholar 

  • Smith A, Chan SJ, Gutierrez J (2005) Autoradiographic and immunohistochemical localization of insulin-like growth factor-I receptor binding sites in brain of the brown trout, Salmo trutta. Gen Comp Endocrinol 141(3):203–213

    Article  CAS  PubMed  Google Scholar 

  • Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, Xu XJ, Wands JR, de la Monte SM (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J Alzheimers Dis 7(1):63–80

    CAS  PubMed  Google Scholar 

  • Thompson CL, Pathak SD, Jeromin A, Ng LL, MacPherson CR, Mortrud MT, Cusick A, Riley ZL, Sunkin SM, Bernard A, Puchalski RB, Gage FH, Jones AR, Bajic VB, Hawrylycz MJ, Lein ES (2008) Genomic anatomy of the hippocampus. Neuron 60(6):1010–1021

    Article  CAS  PubMed  Google Scholar 

  • Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4(1):37–48

    Article  CAS  PubMed  Google Scholar 

  • Torres-Aleman I (2008) Mouse models of Alzheimer’s dementia: current concepts and new trends. Endocrinology 149(12):5952–5957

    Article  CAS  PubMed  Google Scholar 

  • von Wilmsdorff M, Sprick U, Bouvier ML, Schulz D, Schmitt A, Gaebel W (2010) Sex-dependent behavioral effects and morphological changes in the hippocampus after prenatal invasive interventions in rats: implications for animal models of schizophrenia. Clinics 65(2):209–219

    Google Scholar 

  • Werther GA, Abate M, Hogg A, Cheesman H, Oldfield B, Hards D, Hudson P, Power B, Freed K, Herington AC (1990) Localization of insulin-like growth factor-I mRNA in rat brain by in situ hybridization–relationship to IGF-I receptors. Mol Endocrinol 4(5):773–778

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Jordan CL (2002) Sex differences, laterality, and hormonal regulation of androgen receptor immunoreactivity in rat hippocampus. Horm Behav 42(3):327–336

    Article  CAS  PubMed  Google Scholar 

  • Ye P, Li L, Richards RG, DiAugustine RP, D’Ercole AJ (2002) Myelination is altered in insulin-like growth factor-I null mutant mice. J Neurosci 22(14):6041–6051

    CAS  PubMed  Google Scholar 

  • Zalutsky RA, Nicoll RA (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248(4963):1619–1624

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Moats-Staats BM, Ye P, D’Ercole AJ (2007) Expression of insulin-like growth factor system genes during the early postnatal neurogenesis in the mouse hippocampus. J Neurosci Res 85(8):1618–1627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang JM, Konkle AT, Zup SL, McCarthy MM (2008) Impact of sex and hormones on new cells in the developing rat hippocampus: a novel source of sex dimorphism? Eur J Neurosci 27(4):791–800

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This paper is based on the results of Javad Hami Ph.D. thesis (No. A-299) which was financially supported by Mashhad University of Medical Sciences (MUMS) Grant (No. 88463).

Conflicts of interest

The authors have no financial or nonfinancial conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Haghir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hami, J., Kheradmand, H. & Haghir, H. Gender Differences and Lateralization in the Distribution Pattern of Insulin-Like Growth Factor-1 Receptor in Developing Rat Hippocampus: An Immunohistochemical Study. Cell Mol Neurobiol 34, 215–226 (2014). https://doi.org/10.1007/s10571-013-0005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-013-0005-x

Keywords

Navigation