Skip to main content

Umbilical Cord Blood Stem Cell Populations

  • Chapter
  • First Online:
Fetal Stem Cells in Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Many studies have shown that cord blood is comparable to bone marrow for use in stem cell transplantation. Over the past 20 years, more than 30,000 transplants have been performed worldwide using cord blood stem cells. Cord blood stem cells are also now being investigated in a number of regenerative medicine applications. In addition, cord tissue is a readily available source of mesenchymal stem cells for these potential therapies. As both cord blood and cord tissue can only be collected once in a lifetime, cord blood and tissue banks have been established during the past two decades to assist in the preservation of these tissues. These biobanks serve to harvest, process, evaluate and cryopreserve such biological specimens. This review will discuss the methodology needed to perform such endeavors as well as practical clinical uses for the banked samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broxmeyer HE, Gluckman E, Auerbach A, Douglas GW, Friedman H, Cooper S, Hangoc G, Kurtzberg J, Bard J, Boyse EA. Human umbilical cord blood: a clinically useful source of transplantable hematopoietic stem/progenitor cells. Int J Cell Cloning. 1990;8 Suppl 1:76–89. discussion 89-91.

    Article  PubMed  Google Scholar 

  2. Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321(17):1174–8.

    Article  CAS  PubMed  Google Scholar 

  3. Harris D, Schumacher MJ, LoCacsio J, Besencon FJ, Olson G, DeLuca D, Bard J, Boyse E. Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proc Natl Acad Sci U S A. 1992;89:10006–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gluckman E. Stem cell harvesting from cord blood: a new perspective. In: Wunder HA, editor. Peripheral blood stem cell autographs. Berlin: Springer; 1990.

    Google Scholar 

  5. Broxmeyer HA, Kurtzberg J, Gluckman E, Auerbach A, Douglas G, Cooper S, Falkenburg JH, Bard J, Boyse EA. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation: an expanded role for cord blood transplantation. Blood Cells. 1991;17(2):330–7.

    Google Scholar 

  6. Broxmeyer HE, Kurtzberg J, Gluckman E, Auerbach AD, Douglas G, Cooper S, Falkenburg JH, Bard J, Boyse EA. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells. 1991;17(2):313–29.

    CAS  PubMed  Google Scholar 

  7. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse EA. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A. 1989;86(10):3828–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vilmer E, Sterkers G, Rahimy C, Denamur E, Elion J, Broyart A, Lescoeur B, Tiercy JM, Gerota J, Blot P. HLA-mismatched cord-blood transplantation in a patient with advanced leukemia. Transplantation. 1992;53(5):1155–7.

    Article  CAS  PubMed  Google Scholar 

  9. Wagner JE, Kernan NA, Steinbuch M, et al. Allogeneic sibling umbilical cord blood transplantation in children with malignant and nonmalignant disease. Lancet. 1995;346:214–9.

    Article  CAS  PubMed  Google Scholar 

  10. Butler MG, Menitove JE. Umbilical cord blood banking: an update. J Assist Reprod Genet. 2011;28(8):669–76.

    Article  PubMed  PubMed Central  Google Scholar 

  11. McGuckin C, Forraz N, Baradez MO, et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif. 2005;38:245–55.

    Article  CAS  PubMed  Google Scholar 

  12. McGuckin CP, Forraz N, Allouard Q, Pettengell R. Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Exp Cell Res. 2004;295:350–9.

    Article  CAS  PubMed  Google Scholar 

  13. Rogers I, Yamanaka N, Bielecki R, Wong CJ, Chua S, Yuen S, Casper RF. Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Exp Cell Res. 2007;313:1839–52.

    Article  CAS  PubMed  Google Scholar 

  14. Kucia M, Halasa M, Wysoczynski M, et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human umbilical cord blood-preliminary report. Leukemia. 2007;21:297–303.

    Article  CAS  PubMed  Google Scholar 

  15. Harris DT, He X, Badowski M, Nichols JC. Regenerative medicine of the eye: a short review. In: Levicar N, Habib NA, Dimarakis I, Gordon MY, editors. Stem cell repair and regeneration, vol. 3. London: Imperial College Press; 2008. p. 211–25.

    Chapter  Google Scholar 

  16. Sunkomat JNE, Goldman S, Harris DT. Cord blood-derived MNCs delivered intracoronary contribute differently to vascularization compared to CD34+ cells in the rat model of acute ischemia. J Mol Cell Cardiol. 2007;42(6 Suppl 1):97.

    Article  Google Scholar 

  17. Choudhery MS, Badowski M, Muise A, Harris DT. Comparison of the regenerative potential of human adipose and cord tissue derived mesenchymal stem cells. Cytotherapy. 2013;15:330–43.

    Article  CAS  PubMed  Google Scholar 

  18. Harris DT, Rogers I. Umbilical cord blood: a unique source of pluripotent stem cells for regenerative medicine. Curr Stem Cell Res Ther. 2007;2:301–9.

    Article  CAS  PubMed  Google Scholar 

  19. www.clinicaltrials.gov

  20. Harris DT, Badowski M, Ahmad N, Gaballa M. The potential of cord blood stem cells for use in regenerative medicine. Expert Opin Biol Ther. 2007;7(9):1311–22.

    Article  CAS  PubMed  Google Scholar 

  21. Xue G, He M, Zhao J, Chen Y, Tian Y, Zhao B. Intravenous umbilical cord mesenchymal stem cell infusion for the treatment of combined malnutrition nonunion of the humerus and radial nerve injury. Regen Med. 2011;6:733–41.

    Article  PubMed  Google Scholar 

  22. Wu KH, Chan CK, Tsai C, Chang YH, Sieber M, Chiu TH, Ho M, Peng CT, Wu HP, Huang JL. Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells. Transplantation. 2011;91(12):1412–6.

    Article  PubMed  Google Scholar 

  23. Liang J, Zhang H, Hua B, Wang H, Wang J, Han Z, Sun L. Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis. Mult Scler. 2009;15(5):644–6.

    Article  CAS  PubMed  Google Scholar 

  24. Liang J, Gu F, Wang H, Hua B, Hou Y, Shi S, Lu L, Sun L. Mesenchymal stem cell transplantation for diffuse alveolar hemorrhage in SLE. Nat Rev Rheumatol. 2010;6(8):486–9.

    Article  PubMed  Google Scholar 

  25. Reza HM, Ng B-Y, Gimeno FL, Phan TT, Ang LP-K. Umbilical cord lining stem cells as a novel and promising source for ocular surface regeneration. Stem Cell Rev Rep. 2011;7:935–47.

    Article  Google Scholar 

  26. Choudhery MS, Badowski M, Muise A, Pierce J, David T, Harris DT. Cryopreservation of whole adipose tissue for future use in regenerative medicine. J Surg Res. 2014;187(1):24–35.

    Article  CAS  PubMed  Google Scholar 

  27. Choudhery MS, Badowski MS, Muise A, Pierce J, Harris DT. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med. 2014;12:8. doi:10.1186/1479-5876-12-8; URL:http://www.translational-medicine.com/content/12/1/8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Choudhery MS, Badowski M, Muise A, Harris DT. Utility of cryopreserved umbilical cord tissue for regenerative medicine. Curr Stem Cell Res Ther. 2013;8(5):870–80.

    Article  Google Scholar 

  29. Harris DT. Stem cell banking for regenerative and personalized medicine. Biomedicines. 2014;2:50–79. doi:10.3390/biomedicines2010050.

    Article  Google Scholar 

  30. He X, Gonzalez V, Tsang A, Thompson J, Tsang T, Harris DT. Differential gene expression profiling of CD34+CD133+ umbilical cord blood hematopoietic stem-progenitor cells. Stem Cells Dev. 2005;14(2):188–98.

    Article  CAS  PubMed  Google Scholar 

  31. Harris DT, Schumacher MJ, Rychlik S, Booth A, Acevedo A, Rubinstein P, Bard J, Boyse EA. Collection, separation and cryopreservation of umbilical cord blood for use in transplantation. Bone Marrow Transplant. 1994;13:135–43.

    CAS  PubMed  Google Scholar 

  32. Harris D, LoCascio J, Besencon F. Analysis of the alloreactive capacity of human umbilical cord blood: implications for graft-versus-host disease. Bone Marrow Transplant. 1994;14:545–53.

    CAS  PubMed  Google Scholar 

  33. Harris DT. In vitro and in vivo assessment of the graft-versus-leukemia activity of cord blood. Bone Marrow Transplant. 1995;15:17–23.

    CAS  PubMed  Google Scholar 

  34. Harris DT, Schumacher MJ, LoCascio L, Booth A, Bard J, Boyse EA. Immunoreactivity of umbilical cord blood and post-partum peripheral blood with regard to HLA-haploidentical transplantation. Bone Marrow Transplant. 1994;14:63–8.

    CAS  PubMed  Google Scholar 

  35. Harris DT. GVL and GVHD implications of cord blood. Proceedings of the international conference/workshop on cord blood transplantation and biology/immunology. Blood Cells. 1994;20:560–5.

    CAS  PubMed  Google Scholar 

  36. Badowski M, Muise A, Harris DT. Mixed effects of long term frozen storage on cord tissue stem cells. Cytotherapy. 2014;16(9):1313–21.

    Article  CAS  PubMed  Google Scholar 

  37. Badowski M, Shultz C, Harris DT. The effect of anti-coagulant choice on collection of cord blood. Transfusion. 2014;54(9):2364.

    Article  Google Scholar 

  38. Badowski M, Shultz C, Harris DT. The effect of anti-coagulant choice on cord blood processing results. Cytotherapy. 2014;pii:S1465-3249(14)00600-8.

    Google Scholar 

  39. Harris DT, Wang J, He X, Brett SC, Moore ME, Brown H. Studies on practical issues for cord blood banking: effects of ionizing radiation and cryopreservation variables. Open Stem Cell J. 2010;2:37–44. doi:10.2174/1876893801002010037 (ISSN:1876–8938, Volume 2, 2010).

    CAS  Google Scholar 

  40. Harris DT. Optimizing cord blood sample cryopreservation. Cytotherapy. 2012;14(3):359–65.

    Article  CAS  PubMed  Google Scholar 

  41. Rubinstein P, Rosenfield RE, Adamson JW, Stevens CE. Stored placental blood for unrelated bone marrow reconstitution. Blood. 1993;81:1679–90.

    CAS  PubMed  Google Scholar 

  42. Badowski MS, Harris DT. Collection, processing, and banking of umbilical cord blood stem cells for transplantation and regenerative medicine. In: Singh SR, editor. Somatic stem cells: methods and protocols, methods in molecular biology, vol. 879. New York, NY: Springer; 2011. p. 279–90.

    Chapter  Google Scholar 

  43. Papassavas AC, Goika V, Chatzistamatiou T, et al. A strategy of splitting individual high volume cord blood units into two half subunits prior to processing increases the recovery of cells and facilitates ex vivo expansion of the infused hematopoietic progenitor cells in adults. Int J Lab Hematol. 2008;30(2):124–32.

    Article  CAS  PubMed  Google Scholar 

  44. Harris DT, McGaffey AP, Schwarz RH, et al. Comparing the mononuclear cell (MNC) recovery of AXP and Hespan. Obstet Gynecol. 2007;109(4):93S.

    Google Scholar 

  45. Chow R, Nademanee A, Rosenthal J, Karanes C, Jaing T-H, Graham ML, Tsukahara E, Wang B, Gjertson D, Tan P, Forman S, Petz LD. Analysis of hematopoietic cell transplants using plasma-depleted cord blood products that are not red blood cell reduced. Biol Blood Marrow Transplant. 2007;13:1346–57.

    Article  PubMed  Google Scholar 

  46. Harris DT, Pipes B, Wang J, He X, Brown H. Assessment of the effects of repeated freeze/thaw on the stem/progenitor cell capacity of cord blood samples. AABB annual meeting, Oct 2005, Seattle, WA

    Google Scholar 

  47. Broxmeyer HE, Srour EF, Hangoc G, Cooper S, Anderson SA, Bodine DM. High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proc Natl Acad Sci U S A. 2003;100(2):645–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103:1669–75.

    Article  CAS  PubMed  Google Scholar 

  49. Musina RA, Bekchanova ES, Belyavskii AV, Grinenko TS, Sukhikh GT. Umbilical cord blood mesenchymal stem cells. Bull Exp Biol Med. 2007;143:127–31.

    Article  CAS  PubMed  Google Scholar 

  50. Secco M, Zucconi E, Vieira NM, et al. Multipotent stem cells from umbilical cord: cord is richer than blood. Stem Cells. 2008;26:146–50.

    Article  CAS  PubMed  Google Scholar 

  51. Lindenmair A, Hatlapatka T, Kollwig G, et al. Mesenchymal stem or stromal cells from amnion and umbilical cord tissue and their potential for clinical applications. Cells. 2012;1:1061–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang Y-C, Parolini O, La Rocca G, Deng L. Umbilical cord versus bone marrow-derived mesenchymal stromal cells. Stem Cells Dev. 2012;21:2900–3.

    Article  CAS  PubMed  Google Scholar 

  53. William PL, Banister LH, Berry MM, et al. Grays anatomy. 38th ed. London: ELBS Churchill Livingstone; 1995.

    Google Scholar 

  54. Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006;91:1017–26.

    CAS  PubMed  Google Scholar 

  55. Schugar RC, Chirieleison SM, Wescoe KE. High harvest yield, high expansion, and phenotype stability of CD146 mesenchymal stromal cells from whole primitive human umbilical cord tissue. J Biomed Biotechnol. 2009;Article ID 789526:11 pages.

    Google Scholar 

  56. Capelli C, Gotti E, Morigi M, et al. Minimally manipulated whole human umbilical cord is a rich source of clinical grade human mesenchymal stromal cells expanded in human platelet lysate. Cytotherapy. 2011;13:786–801.

    Article  CAS  PubMed  Google Scholar 

  57. Bosch J, Houben AP, Radke TF, et al. Distinct differentiation potential of ‘MSC’ derived from cord blood and umbilical cord: are cord-derived cells true mesenchymal stromal cells? Stem Cells Dev. 2012;21(11):1977–88. doi:10.1089/scd.2011.0414.

    Article  CAS  PubMed  Google Scholar 

  58. Kita K, Gauglitz GG, Phan TT, Herndon DN, Jeschke MG. Isolation and characterization of mesenchymal stem cells from the sub amniotic human umbilical cord lining membrane. Stem Cells Dev. 2010;19:491–502.

    Article  CAS  PubMed  Google Scholar 

  59. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells. 2005;23:220–9.

    Article  PubMed  Google Scholar 

  60. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells. 2003;21:105–10.

    Article  PubMed  Google Scholar 

  61. Karahuseyinoglu S, Cinar O, Kilic E, et al. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells. 2007;25:319–31.

    Article  CAS  PubMed  Google Scholar 

  62. Fu YS, Shih YT, Cheng YC, Min MY. Transformation of human umbilical mesenchymal cells into neurons in vitro. J Biomed Sci. 2004;11:652–60.

    Article  CAS  PubMed  Google Scholar 

  63. Tsagias N, Koliakos I, Karagiannis V, Eleftheriadou M, Koliakis GG. Isolation of mesenchymal stem cells using the total length of umbilical cord for transplantation purposes. Transfus Med. 2011;21:253–61.

    Article  CAS  PubMed  Google Scholar 

  64. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  65. Abdallah BM, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther. 2008;15(2):109–16.

    Article  CAS  PubMed  Google Scholar 

  66. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.

    Article  CAS  PubMed  Google Scholar 

  67. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403.

    CAS  PubMed  Google Scholar 

  68. Bieback K, Kern S, Kocaomer A, Ferlik K, Bugert P. Comparing mesenchymal stromal cells from different human tissues: bone marrow, adipose tissue and umbilical cord blood. Biomed Mater Eng. 2008;18(1 Suppl):S71–6.

    CAS  PubMed  Google Scholar 

  69. Prather WR, Toren A, Meiron M, Ofir R, Tschope C, Horwitz EM. The role of placental-derived adherent stromal cell (PLX-PAD) in the treatment of critical limb ischemia. Cytotherapy. 2009;11(4):427–34.

    Article  CAS  PubMed  Google Scholar 

  70. Jo CH, Kim OS, Park EY, et al. Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion. Cell Tissue Res. 2008;3:423–33.

    Article  Google Scholar 

  71. Troyer DL, Weiss ML. Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008;26(3):591–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Marmotti A, Mattia S, Bruzzone M, Buttiglieri S, Risso A, Bonasia DE, Blonna D, Castoldi F, Rossi R, Zanini C, Ercole E, Defabiani E, Tarella C, Peretti GM. Minced umbilical cord fragments as a source of cells for orthopaedic tissue engineering: an in vitro study. Stem Cells Int. 2012;2012:326813. doi:10.1155/2012/326813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nekanti U, Mohanty L, Venugopal P, Balasubramanian S, Totey S, Ta M. Optimization and scale-up of Wharton’s jelly-derived mesenchymal stem cells for clinical applications. Stem Cell Res. 2001;5:244–54.

    Article  CAS  Google Scholar 

  74. Pilz GA, Ulrich C, Ruh M, Abele H, Schäfer R, Kluba T, Bühring HJ, Rolauffs B, Aicher WK. Human term placenta-derived mesenchymal stromal cells are less prone to osteogenic differentiation than bone marrow-derived mesenchymal stromal cells. Stem Cells Dev. 2011;20:635–46.

    Article  CAS  PubMed  Google Scholar 

  75. Kikuchi-Taura A, Taguchi A, Kanda T, et al. Human umbilical cord provides a significant source of unexpanded mesenchymal stromal cells. Cytotherapy. 2012;14:441–50.

    Article  CAS  PubMed  Google Scholar 

  76. Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med. 2009;4(3):423–33.

    Article  PubMed  Google Scholar 

  77. Can A, Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells. 2007;25(11):2886–95.

    Article  PubMed  Google Scholar 

  78. Fan C-G, Zhang Q-J, Zhou J-R. Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev Rep. 2011;7:195–207.

    Article  Google Scholar 

  79. Xiao J, Nan Z, Motooka Y, Low WC. Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev. 2005;14:722–33.

    Article  CAS  PubMed  Google Scholar 

  80. Newcomb JD, Ajrno CT, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE. Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant. 2006;15:213–23.

    Article  PubMed  Google Scholar 

  81. Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, Willing AE. Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol. 2006;199(1):191–200.

    Article  CAS  PubMed  Google Scholar 

  82. Meier C, Middelanis J, Wasielewski B, Neuhoff S, Roth-Haerer A, Gantert M, Dinse HR, Dermietzel R, Jensen A. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res. 2006;59(2):244–9.

    Article  PubMed  Google Scholar 

  83. Chen SH, Chang FM, Tsai YC, Huang KF, Lin CL, Lin MT. Infusion of human umbilical cord blood cells protect against cerebral ischemia and damage during heatstroke in the rat. Exp Neurol. 2006;199(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  84. Vendrame M, Gemma C, de Mesquita D, Collier L, Bickford PC, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE. Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev. 2005;14(5):595–604.

    Article  CAS  PubMed  Google Scholar 

  85. Nan Z, Grande A, Sanberg CD, Sanberg PR, Low WC. Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury. Ann N Y Acad Sci. 2005;1049:84–96.

    Article  PubMed  Google Scholar 

  86. Nystedt J, Mäkinen S, Laine J, Jolkkonen J. Human cord blood CD34+ cells and behavioral recovery following focal cerebral ischemia in rats. Acta Neurobiol Exp (Wars). 2006;66(4):293–300.

    Google Scholar 

  87. Mäkinen S, Kekarainen T, Nystedt J, Liimatainen T, Huhtala T, Närvänen A, Laine J, Jolkkonen J. Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Res. 2006;1123(1):207–15.

    Article  PubMed  CAS  Google Scholar 

  88. Lu D, Sanberg PR, Mahmood A, Li Y, Wang L, Sanchez-Ramos J, Chopp M. Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant. 2002;11:275–81.

    PubMed  Google Scholar 

  89. Kuh SU, Cho YE, Yoon DH, Kim KN, Ha Y. Functional recovery after human umbilical cord blood cells transplantation with brain derived-neurotropic factor into the spinal cord injured rats. Acta Neurochir (Wein). 2005;14:985–92.

    Article  Google Scholar 

  90. Kang K-S, Kim SW, Oh YH, Yu JW, Kim K-Y, Park HK, Song C-H, Han H. A thirty-seven-year old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood with improved sensory perception and mobility, both functionally and morphologically: a case study. Cytotherapy. 2005;7:368–73.

    Article  PubMed  Google Scholar 

  91. Copeland N, Harris D, Gaballa MA. Human umbilical cord blood stem cells, myocardial infarction and stroke. Clin Med. 2009;9(4):342–5.

    Article  Google Scholar 

  92. Botta R, Gao E, Stassi G, et al. Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells ad low dose CD34+KDR+ cells. FASEB J. 2004;18:1392–4.

    CAS  PubMed  Google Scholar 

  93. Henning RJ, Abu-Ali H, Balis JU, et al. Human umbilical cord blood mononuclear cells for treatment of acute myocardial infarction. Cell Transplant. 2004;13:729–39.

    Article  PubMed  Google Scholar 

  94. Chen HK, Hung HF, Shyu KG, et al. Combined cord blood cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur J Clin Invest. 2005;35:677–86.

    Article  CAS  PubMed  Google Scholar 

  95. Hirata Y, Sata M, Motomura N, et al. Human umbilical cord blood cells improve cardiac function after myocardial infarction. Biochem Biophys Res Commun. 2005;327:609–14.

    Article  CAS  PubMed  Google Scholar 

  96. Kim BO, Tian H, Prasongsukarn K, et al. Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation. 2006;112(9 Suppl):196–204.

    Google Scholar 

  97. Leor J, Guetta E, Feinberg MS, et al. Human umbilical cord blood-derived CD133+ cells enhance function and repair of the infracted myocardium. Stem Cells. 2006;24(3):772–80.

    Article  PubMed  Google Scholar 

  98. Ma N, Stamm C, Kaminski A, et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid mice. Cardiovasc Res. 2005;66:45–54.

    Article  CAS  PubMed  Google Scholar 

  99. Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A. 2005;102:11474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bonnano G, Mariotti A, Procoli A, et al. Human cord blood CD133+ cells imunoselected by a clinical-grade apparatus differentiate in vitro into endothelial- and cardiomyocyte-like cells. Transfusion. 2007;47:280–9.

    Article  CAS  Google Scholar 

  101. Liao W, Zhong J, Yu J, et al. Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrhage rat: implications of anti-inflammation and angiogenesis. Cell Physiol Biochem. 2009;24(3–4):307–16.

    Article  CAS  PubMed  Google Scholar 

  102. Lim JH, Byeon YE, Ryu HH, et al. Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. J Vet Sci. 2007;8(3):275–82.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS. Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord. PLoS One. 2008;3(10), e3336.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Zhang L, Zhang HT, Hong SQ, Ma X, Jiang XD, Xu RX. Cografted Wharton’s jelly cells-derived neurospheres and BDNF promote functional recovery after rat spinal cord transection. Neurochem Res. 2009;34(11):2030–9.

    Article  CAS  PubMed  Google Scholar 

  105. Hu S-L, Luo H-S, Li J-T, Xia Y-Z, Li L, Zhang L-J, Meng H, Cui G-Y, Chen Z, Wu N, Lin J-K, Zhu G, Feng H. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Crit Care Med. 2010;38:2181–9.

    Article  PubMed  Google Scholar 

  106. Weiss ML, Medicetty S, Bledsoe AR, et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells. 2006;24(3):781–92.

    Article  CAS  PubMed  Google Scholar 

  107. Fu YS, Cheng YC, Lin MY, et al. Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells. 2006;24(1):115–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Harris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harris, D.T. (2016). Umbilical Cord Blood Stem Cell Populations. In: Fauza, D., Bani, M. (eds) Fetal Stem Cells in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3483-6_13

Download citation

Publish with us

Policies and ethics