Skip to main content

Advertisement

Log in

Cografted Wharton’s Jelly Cells-derived Neurospheres and BDNF Promote Functional Recovery After Rat Spinal Cord Transection

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

An animal model of transected spinal cord injury (SCI) was used to test the hypothesis that cografted human umbilical mesenchymal stem cells-derived neurospheres (HUMSC-NSs) and BDNF can promote morphologic and functional recoveries of injured spinal cord. In vitro, HUMSC-NSs terminally differentiated into higher percentages of cells expressing neuronal markers: β-tubulin III and MAP2ab by the supplement with BDNF. Following grafted into injured spinal cord, very few grafted cells survived in the HUMSC-NSs + BDNF-treated (<3%) and HUMSC-NSs-treated (<1%) groups. The survived cells were differentiated into various cells, which were confirmed by double staining of BrdU and neural or glia markers. In comparison, more grafted cells in the HUMSC-NSs + BDNF group transformed into mature neural-like cells, while more grafted cells in the HUMSC-NSs group transformed into oligodendrocyte-like cells. HUMSC-NSs + BDNF-treated group had more greatly improved BBB scores, compared with HUMSC-NSs-treated and medium-treated groups. Additionally, axonal regeneration showed significant improvement in rats receiving HUMSC-NSs + BDNF, compared with HUMSC-NSs-treated and medium-treated groups, as demonstrated by the NF-200-positive staining and Fluorogold (FG) retrograde tracing study. Lastly, a significant reduction in the percentage cavitation was seen in the two cell-treated groups compared with medium control group. These results means BDNF could promote the neural differentiation of HUMSC-NSs in vitro and in vivo. However, cellular replacement is unlikely to explain the improvement in functional outcome. The functional recovery might more rely on the axonal regeneration and neuroprotective action that active by the grafted cells. Cografted HUMSCs and BDNF is a potential therapy for SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L et al (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21(1):50–60

    PubMed  CAS  Google Scholar 

  2. Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS (2008) Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord. PLoS One 3(10):3336. doi:10.1371/journal.pone.0003336

    Article  Google Scholar 

  3. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ et al (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22(7):1330–1337. doi:10.1634/stemcells.2004-0013

    Article  PubMed  Google Scholar 

  4. Troyer DL, Weiss ML (2008) Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26(3):591–599. doi:10.1634/stemcells.2007-0439

    Article  PubMed  Google Scholar 

  5. Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC et al (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24(1):115–124. doi:10.1634/stemcells.2005-0053

    Article  PubMed  Google Scholar 

  6. Chao KC, Chao KF, Fu YS, Liu SH (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 3(1):e1451. doi:10.1371/journal.pone.0001451

    Article  PubMed  Google Scholar 

  7. Fu YS, Shih YT, Cheng YC, Min MY (2004) Transformation of human umbilical mesenchymal cells into neurons in vitro. J Biomed Sci 11(5):652–660. doi:10.1007/BF02256131

    Article  PubMed  CAS  Google Scholar 

  8. Kwon BK, Liu J, Lam C, Plunet W, Oschipok LW, Hauswirth W et al (2007) Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury. Spine 32(11):1164–1173. doi:10.1097/BRS.0b013e318053ec35

    Article  PubMed  Google Scholar 

  9. Shumsky JS, Tobias CA, Tumolo M, Long WD, Giszter SF, Murray M (2003) Delayed transplantation of fibroblasts genetically modified to secrete BDNF and NT-3 into a spinal cord injury site is associated with limited recovery of function. Exp Neurol 184(1):114–130. doi:10.1016/S0014-4886(03)00398-4

    Article  PubMed  CAS  Google Scholar 

  10. Song XY, Li F, Zhang FH, Zhong JH, Zhou XF (2008) Peripherally-derived BDNF promotes regeneration of ascending sensory neurons after spinal cord injury. PLoS ONE 3(3):e1707

    Article  PubMed  Google Scholar 

  11. Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO et al (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117(Pt 19):4411–4422. doi:10.1242/jcs.01307

    Article  PubMed  CAS  Google Scholar 

  12. Zhang HT, Cheng HY, Cai YQ, Ma X, Liu WP, Yan ZJ, et al (2009) Comparison of adult neurospheres derived from different origins for treatment of rat spinal cord injury. Neurosci Lett 458(3):116–121. doi:10.1016/jneulet.2009.04.045

    Article  PubMed  CAS  Google Scholar 

  13. Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA et al (1996) MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter animal spinal cord injury study. J Neurotrauma 13(7):343–359. doi:10.1089/neu.1996.13.343

    Article  PubMed  CAS  Google Scholar 

  14. Hains BC, Saab CY, Lo AC, Waxman SG (2004) Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI. Exp Neurol 188(2):365–377. doi:10.1016/j.expneurol.2004.04.001

    Article  PubMed  CAS  Google Scholar 

  15. Reier PJ (2004) Cellular transplantation strategies for spinal cord injury and translational neurobiology. NeuroRx 1(4):424–451. doi:10.1602/neurorx.1.4.424

    Article  PubMed  Google Scholar 

  16. Parr AM, Kulbatski I, Zahir T, Wang X, Yue C, Keating A et al (2008) Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 155(3):760–770. doi:10.1016/j.neuroscience.2008.05.042

    Article  PubMed  CAS  Google Scholar 

  17. Vaquero J, Zurita M (2009) Bone marrow stromal cells for spinal cord repair: a challenge for contemporary neurobiology. Histol Histopathol 24(1):107–116

    PubMed  CAS  Google Scholar 

  18. Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J et al (2002) Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22(4):275–279. doi:10.1046/j.1440-1789.2002.00450.x

    Article  PubMed  Google Scholar 

  19. Kirschenbaum B, Goldman SA (1995) Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc Natl Acad Sci USA 92(1):210–214. doi:10.1073/pnas.92.1.210

    Article  PubMed  CAS  Google Scholar 

  20. Kuh SU, Cho YE, Yoon DH, Kim KN, Ha Y (2005) Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Acta Neurochir (Wien) 147(9):985–992. doi:10.1007/s00701-005-0538-y (discussion 992)

    Article  Google Scholar 

  21. Mahmood A, Lu D, Wang L, Chopp M (2002) Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J Neurotrauma 19(12):1609–1617. doi:10.1089/089771502762300265

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Health & Biotech (Guangdong, Guangzhou, China) for them kindly present human umbilical mesenchymal stem cells. This research was supported by Natural Science Found of China (NSFC) (U0632008, 30772232, 30801184), Foundations for Key Sci-Tech Research Projects of Guangdong Province [2006Z3-E522, YUE KEJIBAN (2007) 05/06-7005206, 05/06-7005213,YUECAIJIAO (2008) 258-2008A030201019], and Foundations for Key Sci-Tech Research Projects of Guangzhou [YUEKETIAOZI (2008)3-2008A1-E4011-6].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-Xiang Xu.

Additional information

L. Zhang and H.T. Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Zhang, HT., Hong, SQ. et al. Cografted Wharton’s Jelly Cells-derived Neurospheres and BDNF Promote Functional Recovery After Rat Spinal Cord Transection. Neurochem Res 34, 2030–2039 (2009). https://doi.org/10.1007/s11064-009-9992-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-9992-x

Keywords

Navigation