Skip to main content

Advertisement

Log in

Umbilical Cord Lining Stem Cells as a Novel and Promising Source for Ocular Surface Regeneration

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The stem cells involved in renewal of the corneal epithelium are located in the basal region of the limbus, a narrow transition zone surrounding the cornea. In many ocular surface disorders loss of these stem cells results in partial or complete vision loss. Conventional corneal transplant in these patients is associated with dismal results. Stem cell transplantation offers new hope to such patients. The umbilical cord is emerging as an important source of stem cells that may have potential clinical applications. There are advantages to the use of umbilical cord stem cells as these cells are less immunogenic, non-tumorigenic, highly proliferative and ethically acceptable. In this study, we have confirmed the expression of several putative limbal stem cell markers such as HES1, ABCG2, BMI1, CK15 as well as cell adhesion-associated molecules INTEGRIN-α6, -α9, -β1, COLLAGEN-IV and LAMININ in our recently characterized CLEC-muc population derived from human umbilical cord. Ex vivo expansion of these cells on a human amniotic membrane substrate formed a stratified cell sheet that similarly expresses some of these molecules as well as cornea-specific cytokeratins, CK3 and CK12. Transplantation of a bioengineered CLEC-muc sheet in limbal stem cell-deficient rabbit eyes resulted in regeneration of a smooth, clear corneal surface with phenotypic expression of the normal corneal-specific epithelial markers CK3, CK12 but not CK4 or CK1/10. Our results suggest that CLEC-muc is a novel stem cell that can be ex vivo expanded for corneal epithelial regeneration in the treatment of various eye diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dua, H. S., & Azuara-Blanco, A. (2000). Autologous limbal transplantation in patients with unilateral corneal stem cell deficiency. The British Journal of Ophthalmology, 84(3), 273–278.

    Article  PubMed  CAS  Google Scholar 

  2. Thoft, R. A., Wiley, L. A., & Sundarraj, N. (1989). The multipotential cells of the limbus. Eye, 3(Pt2), 109–113.

    Article  PubMed  Google Scholar 

  3. Tseng, S. C. (1989). Concept and application of limbal stem cells. Eye, 3(Pt2), 141–157.

    Article  PubMed  Google Scholar 

  4. Ang, L. P., & Tan, D. T. (2004). Ocular surface stem cells and disease: current concepts and clinical applications. Annals of the Academy of Medicine, Singapore, 33(5), 576–580.

    PubMed  CAS  Google Scholar 

  5. Puangsricharern, V., & Tseng, S. C. (1995). Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology, 102(10), 1476–1485.

    PubMed  CAS  Google Scholar 

  6. Shapiro, M. S., Friend, J., & Thoft, R. A. (1981). Corneal re-epithelialization from the conjunctiva. Investigative Ophthalmology & Visual Science, 21(1), 135–142.

    CAS  Google Scholar 

  7. Liang, L., Sheha, H., Li, J., & Tseng, S. C. (2009). Limbal stem cell transplantation: new progresses and challenges. Eye, 23(10), 1946–1953.

    Article  PubMed  CAS  Google Scholar 

  8. Kenyon, K. R., & Tseng, S. C. (1989). Limbal autograft transplantation for ocular surface disorders. Ophthalmology, 96(5), 709–723.

    PubMed  CAS  Google Scholar 

  9. Yiu, S. C., Thomas, P. B., & Nguyen, P. (2007). Ocular surface reconstruction: recent advances and future outlook. Cornea, 18(6), 509–514.

    Google Scholar 

  10. Pellegrini, G., Traverso, C. E., Franzi, A. T., Zingirian, M., Cancedda, R., & De Luca, M. (1997). Longterm restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet, 349(9064), 990–993.

    Article  PubMed  CAS  Google Scholar 

  11. Ang, L. P. K., Sotozono, C., Koizumi, N., Suzuki, T., Inatomi, T., & Kinoshita, S. (2007). A comparison between cultivated and conventional limbal stem cell transplantation for Stevens-Johnson syndrome. American Journal of Ophthalmology, 143(1), 178–180.

    Article  PubMed  Google Scholar 

  12. Nakamura, T., Inatomi, T., Sotozono, C., et al. (2006). Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmology, 113(10), 1765–1772.

    Article  PubMed  Google Scholar 

  13. Ang, L. P. K., Tan, D. T. H., Cajucom-Uy, H., Phan, T. T., Beurman, R., & Lavker, R. M. (2005). Autologous cultivated conjunctival transplantation for Pperygium surgery. American Journal of Ophthalmology, 139(4), 611–619.

    Article  PubMed  Google Scholar 

  14. Tan, D. T. H., Ang, L. P. K., & Beuerman, R. W. (2004). Reconstruction of the ocular surface by transplantation of a serum-free derived cultivated conjunctival epithelial equivalent. Transplantation, 77(11), 1729–1734.

    Article  PubMed  Google Scholar 

  15. Ang, L. P. K., Tanioka, H., Ang, L. P. S., et al. (2010). The use of cultivated human conjunctival epithelial transplantation for total limbal stem cell deficiency. Investigative Ophthalmology & Visual Science, 51(2), 758–764.

    Article  Google Scholar 

  16. Ang, L. P. K., Nakamura, T., Inatomi, T., et al. (2006). Autologous serum-derived cultivated oral epithelial transplants for severe ocular surface disease. Archives of Ophthalmology, 124(11), 1543–1551.

    Article  PubMed  Google Scholar 

  17. Nishida, K., Yamato, M., Hayashida, Y., et al. (2004). Corneal reconstruction with tissueengineered cell sheets composed of autologous oral mucosal epithelium. The New England Journal of Medicine, 351(12), 1187–1196.

    Article  PubMed  CAS  Google Scholar 

  18. Murry, C. E., & Keller, G. (2008). Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 132(4), 661–680.

    Article  PubMed  CAS  Google Scholar 

  19. Hanna, J., Wernig, M., Markoulaki, S., et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858), 1920–1923.

    Article  PubMed  CAS  Google Scholar 

  20. Sun, N., Longaker, M. T., & Wu, J. C. (2010). Human iPS cell-based therapy: considerations before clinical applications. Cell Cycle, 9(5), 880–885.

    Article  PubMed  CAS  Google Scholar 

  21. Kiskinis, E., & Eggan, K. (2010). Progress toward the clinical application of patient-specific pluripotent stem cells. Journal of Clinical Invesigation, 120(1), 51–59.

    Article  CAS  Google Scholar 

  22. Ruetze, M., Gallinat, S., Lim, I. J., et al. (2008). Common features of umbilical cord epithelial cells and epidermal keratinocytes. Journal of Dermatological Science, 50(3), 227–231.

    Article  PubMed  CAS  Google Scholar 

  23. Mizoguchi, M., Suga, Y., Sanmano, B., Ikeda, S., & Ogawa, H. (2004). Organotypic culture and surface plantation using umbilical cord epithelial cells: morphogenesis and expression of differentiation markers mimicking cutaneous epidermis. Journal of Dermatological Science, 35(3), 199–206.

    Article  PubMed  CAS  Google Scholar 

  24. Kita, K., Gauglitz, G. G., Phan, T. T., Herndon, D. N., & Jeschke, M. G. (2010). Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells and Development, 19(4), 491–502.

    Article  PubMed  CAS  Google Scholar 

  25. Taylor, G., Lehrer, M. S., Jensenm, P. J., Sun, T. T., & Lavker, R. M. (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell, 102(4), 451–461.

    Article  PubMed  CAS  Google Scholar 

  26. Sanmano, B., Mizoguchi, M., Suga, Y., Ikeda, S., & Ogawa, H. (2005). Engraftment of umbilical cord epithelial cells in athymic mice: in an attempt to improve reconstructed skin equivalents used as epithelial composite. Journal of Dermatological Science, 37(1), 29–39.

    Article  PubMed  CAS  Google Scholar 

  27. Reza, H. M., Ng, B., Phan, T. T., Tan, D. T. H., Beuerman, R. W., & Ang, L. P. (2010). Characterization of a novel umbilical cord lining cell with CD227 positivity and unique pattern of p63 expression and function. Stem Cell Reviews and Reports, Dec 22, Epub ahead of print.

  28. Collinson, J., Morris, L., Reid, A., et al. (2002). Clonal analysis of patterns of growth, stem cell activity and cell movement during the development and maintenance of murine corneal epithelium. Develomental Dynamics, 224(4), 432–440.

    Article  Google Scholar 

  29. Moore, J. E., McMullen, C. B., Mahon, G., & Adamis, A. P. (2002). The corneal epithelial stem cell. DNA and Cell Biology, 21(5–6), 443–451.

    Article  PubMed  CAS  Google Scholar 

  30. Lyngholm, M., Vorum, H., Nielsen, K., Østergaard, M., Honoré, B., & Ehlers, N. (2008). Differences in the protein expression in limbal versus central human corneal epithelium—a search for stem cell markers. Experimental Eye Research, 87(2), 96–105.

    Article  PubMed  CAS  Google Scholar 

  31. Secker, G. A., & Daniels, J. T. (2009). Limbal epithelial stem cells of the cornea. In F. Watt & F. Gage (Ed.), The stem cell research community, StemBook, http://www.stembook.org.

  32. Espana, E. M., He, H., Kawakita, T., & Di Pascuale, M. A. (2003). Human keratocytes cultured on amniotic membrane stroma preserve morphology and express keratocan. Investigative Ophthalmology & Visual Science, 44(12), 5136–5141.

    Article  Google Scholar 

  33. Grueterich, M., Espana, E., & Tseng, S. C. (2002). Connexin 43 expression and proliferation of human limbal epithelium on intact and denuded amniotic membrane. Investigative Ophthalmology & Visual Science, 43(1), 63–71.

    Google Scholar 

  34. Chaloin-Dufau, C., Pavitt, I., Delorme, P., & Dhouailly, D. (1993). Identification of keratins 3 and 12 in corneal epithelium of vertebrates. Epithelial Cell Biology, 2(3), 120–125.

    PubMed  CAS  Google Scholar 

  35. Kurpakus, M. A., Maniaci, M. T., & Esco, M. (1994). Expression of keratins K12, K4 and K14 during development of ocular surface epithelium. Current Eye Research, 13(11), 805–814.

    Article  PubMed  CAS  Google Scholar 

  36. Nakamura, T., Endo, K., & Kinoshita, S. (2007). Identification of human oral keratinocyte stem/progenitor cells by neurotrophin receptor p75 and the role of neurotrophin/p75 signaling. Stem Cells, 25(3), 628–638.

    Article  PubMed  CAS  Google Scholar 

  37. Anderson, D. F., Ellies, P., Pires, R. T. F., & Tseng, S. C. G. (2001). Amniotic membrane transplantation for partial limbal stem cell deficiency: long term outcomes. The British Journal of Ophthalmology, 85(5), 567–575.

    Article  PubMed  CAS  Google Scholar 

  38. Meller, D., Pires, R. T. F., & Tseng, S. C. G. (2002). Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. The British Journal of Ophthalmology, 86(4), 463–471.

    Article  PubMed  CAS  Google Scholar 

  39. Grueterich, M., Espana, M. E., & Tseng, S. C. G. (2003). Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Survey of Ophthalmology, 48(6), 631–646.

    Article  PubMed  Google Scholar 

  40. Yang, X., Moldovan, N. I., Zhao, Q., et al. (2008). Reconstruction of damaged cornea by autologous transplantation of epidermal adult stem cells. Molecular Vision, 14, 1064–1074.

    PubMed  CAS  Google Scholar 

  41. Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: mechanisms that promote stem cell. Cell, 132(4), 598–611.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, M., Yoshida, A., Kawashima, H., Ishizaki, M., Takahashi, H., & Hori, J. (2006). Immunogenicity and antigenicity of allogeneic amniotic epithelial transplants grafted to the cornea, conjunctiva, and anterior chamber. Investigative Ophthalmology & Visual Science, 47(4), 1522–1532.

    Article  Google Scholar 

  43. Streilein, J. W. (2003). New thoughts on the immunology of corneal transplantation. Eye, 17(8), 943–948.

    Article  PubMed  CAS  Google Scholar 

  44. Sivalingam, J., Krishnan, S., Ng, W. H., Lee, S. S., Phan, T. T., & Kon, O. L. (2010). Biosafety assessment of site-directed transgene integration in human umbilical cord-lining cells. Molecular Therapy, 18(7), 1346–1356.

    Article  PubMed  CAS  Google Scholar 

  45. Inatomi, T., Nakamura, T., Koizumi, N., Sotozono, C., Yokoi, N., & Kinoshita, S. (2006). Midterm results on ocular surface reconstruction using cultivated autologous oral mucosal epithelial transplantation. American Journal of Ophthalmology, 142(5), 757–764.

    Article  PubMed  Google Scholar 

  46. Nakamura, T., Inatomi, T., Sotozono, C., Amemiya, T., Kanamura, N., & Kinoshita, S. (2004). Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. The British Journal of Ophthalmology, 88(10), 1280–1284.

    Article  PubMed  CAS  Google Scholar 

  47. Tanioka, H., Kawasaki, S., Yamasaki, K., et al. (2006). Establishment of a cultivated human conjunctival epithelium as an alternative tissue source for autologous corneal epithelial transplantation. Investigative Ophthalmology & Visual Science, 47(9), 3820–3827.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. V.A.Varathi, Dr. M. Dong-Rui, L. Wing-Sum and Y. Sia-Wey for helping in animal studies. This study was supported by grants from Biomedical Research Council, Singapore (BMRC 04/1/35/19/302 and 07/1/35/19/536 to LPK Ang).

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Pek-Kiang Ang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reza, H.M., Ng, BY., Gimeno, F.L. et al. Umbilical Cord Lining Stem Cells as a Novel and Promising Source for Ocular Surface Regeneration. Stem Cell Rev and Rep 7, 935–947 (2011). https://doi.org/10.1007/s12015-011-9245-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9245-7

Keywords

Navigation