Skip to main content

Risk Biotypes and the Female Athlete Triad

  • Chapter
  • First Online:
Exercise and Human Reproduction

Abstract

The number of women participating in sports has increased dramatically in the past few decades. This rise in sports participation promotes numerous mental and physical benefits to the female athlete. However, clinical experience and research reports provide evidence of a health sequela, the “Female Athlete Triad,” developing as a result of inadequate dietary intake relative to exercise expenditure among a subset of athletes. The Female Athlete Triad (Triad) is an interrelated disorder of low energy availability, menstrual dysfunction, and reduced bone mineral density, and has been studied in various populations of athletic girls and women. In addition, current evidence suggests that athletes with Triad can experience other detrimental effects, including musculoskeletal, cardiovascular, gastrointestinal, renal, and neuropsychiatric symptoms. Female athletes participating in sports emphasizing leanness are at increased risk of developing the Triad. Factors that may account for this increased risk include an increased pressure to meet specific weight or body shape requirements of sport, the perceived benefit of a low body weight or thin frame in optimizing performance, and an increased susceptibility to sociocultural demands. These factors can lead to harmful dieting and subsequent energy deficit with likely health repercussions. Alternatively, some leanness sport athletes, such as those in endurance sports, may also develop an energy deficit inadvertently as a result of a high training volume and lack of awareness of their energy and nutritional needs. The specific risk biotypes considered in this chapter include endurance sports (e.g., runners, triathletes, cyclists, and swimmers), aesthetic sports (e.g., figure skating and gymnastics), weight-class sports (e.g., lightweight rowing and wrestling), and others. The involvement of a multidisciplinary team including sport medicine physicians, athletic trainers, dietitians, sports psychologists, among others, is required for the treatment of the Triad. The management comprises non-pharmacological and pharmacological approaches in some cases. However, the most effective way to avoid long-term consequences is early detection and prevention of this condition, especially in higher risk populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kemper HC, et al. Lifestyle and obesity in adolescence and young adulthood: results from the Amsterdam Growth and Health Longitudinal Study (AGAHLS). Int J Obes Relat Metab Disord. 1999;23 Suppl 3:S34–40.

    Article  PubMed  Google Scholar 

  2. Haskell WL, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423–34.

    Article  PubMed  Google Scholar 

  3. Boreham C, et al. Associations between physical fitness and activity patterns during adolescence and cardiovascular risk factors in young adulthood: the Northern Ireland Young Hearts Project. Int J Sports Med. 2002;23 Suppl 1:S22–6.

    Article  PubMed  Google Scholar 

  4. Hasselstrom H, et al. Physical fitness and physical activity during adolescence as predictors of cardiovascular disease risk in young adulthood. Danish Youth and Sports Study. An eight-year follow-up study. Int J Sports Med. 2002;23 Suppl 1:S27–31.

    Article  PubMed  Google Scholar 

  5. Babiss LA, Gangwisch JE. Sports participation as a protective factor against depression and suicidal ideation in adolescents as mediated by self-esteem and social support. J Dev Behav Pediatr. 2009;30(5):376–84

    Google Scholar 

  6. Women’s Sports Foundation editor. Play fair, a title IX playbook for victory. East Meadow: Women’s Sports Foundation; 2009.

    Google Scholar 

  7. National Coalition for Women and Girls in Education. Beyond the headlines: a report of the National Coalition for Women and Girls in Education. National Coalition for Women and Girls in Education. Washington, DC.; 2008.

    Google Scholar 

  8. Kulig K, Brener ND, McManus T. Sexual activity and substance use among adolescents by category of physical activity plus team sports participation. Arch Pediatr Adolesc Med. 2003;157(9):905–12.

    Article  PubMed  Google Scholar 

  9. Miller KE, et al. Sports, sexual behavior, contraceptive use, and pregnancy among female and male high school students: testing cultural resource theory. Sociol Sport J. 1999;16(4):366–87.

    CAS  PubMed  Google Scholar 

  10. Nattiv A, et al. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.

    Article  PubMed  Google Scholar 

  11. Yeager KK, et al. The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc. 1993;25(7):775–7.

    Article  CAS  PubMed  Google Scholar 

  12. Otis CL, et al. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 1997;29(5):i–ix.

    Article  CAS  PubMed  Google Scholar 

  13. De Souza MJ, et al. 2014 female athlete triad coalition consensus statement on treatment and return to play of the female athlete triad: 1st International Conference held in San Francisco, California, May 2012 and 2nd International Conference held in Indianapolis, Indiana, May 2013. Br J Sports Med. 2014;48(4):289.

    Article  PubMed  Google Scholar 

  14. Mountjoy M, et al. The IOC consensus statement: beyond the Female Athlete Triad–Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491–7.

    Article  PubMed  Google Scholar 

  15. Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol (1985). 1998;84(1):37–46.

    CAS  Google Scholar 

  16. Loucks AB, et al. Alterations in the hypothalamic-pituitary-ovarian and the hypothalamic-pituitary-adrenal axes in athletic women. J Clin Endocrinol Metab. 1989;68(2):402–11.

    Article  CAS  PubMed  Google Scholar 

  17. De Souza MJ, et al. High prevalence of subtle and severe menstrual disturbances in exercising women: confirmation using daily hormone measures. Hum Reprod. 2010;25(2):491–503.

    Article  PubMed  CAS  Google Scholar 

  18. Scheid JL, et al. Elevated PYY is associated with energy deficiency and indices of subclinical disordered eating in exercising women with hypothalamic amenorrhea. Appetite. 2009;52(1):184–92.

    Article  CAS  PubMed  Google Scholar 

  19. Doyle-Lucas AF, Akers JD, Davy BM. Energetic efficiency, menstrual irregularity, and bone mineral density in elite professional female ballet dancers. J Dance Med Sci. 2010;14(4):146–54.

    PubMed  Google Scholar 

  20. Fuqua JS, Rogol AD. Neuroendocrine alterations in the exercising human: implications for energy homeostasis. Metabolism. 2013;62(7):911–21.

    Article  CAS  PubMed  Google Scholar 

  21. Gordon CM. Clinical practice. Functional hypothalamic amenorrhea. N Engl J Med. 2010;363(4):365–71.

    Article  CAS  PubMed  Google Scholar 

  22. Gruodyte R, et al. The relationships among bone health, insulin-like growth factor-1 and sex hormones in adolescent female athletes. J Bone Miner Metab. 2010;28(3):306–13.

    Article  CAS  PubMed  Google Scholar 

  23. Thrailkill KM, et al. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab. 2005;289(5):E735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dhanwal DK. Thyroid disorders and bone mineral metabolism. Indian J Endocrinol Metab. 2011;15 Suppl 2:S107–12.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harvey CB, et al. Molecular mechanisms of thyroid hormone effects on bone growth and function. Mol Genet Metab. 2002;75(1):17–30.

    Article  CAS  PubMed  Google Scholar 

  26. Corr M, et al. Circulating leptin concentrations do not distinguish menstrual status in exercising women. Hum Reprod. 2011;26(3):685–94.

    Article  CAS  PubMed  Google Scholar 

  27. Hamrick MW, Ferrari SL. Leptin and the sympathetic connection of fat to bone. Osteoporos Int. 2008;19(7):905–12.

    Article  CAS  PubMed  Google Scholar 

  28. Dalamaga M, et al. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab. 2013;18(1):29–42.

    Article  CAS  PubMed  Google Scholar 

  29. Laughlin GA, Yen SS. Nutritional and endocrine-metabolic aberrations in amenorrheic athletes. J Clin Endocrinol Metab. 1996;81(12):4301–9.

    CAS  PubMed  Google Scholar 

  30. Scheid JL, De Souza MJ. Menstrual irregularities and energy deficiency in physically active women: the role of ghrelin, PYY and adipocytokines. Med Sport Sci. 2010;55:82–102.

    Article  CAS  PubMed  Google Scholar 

  31. Utz AL, et al. Peptide YY (PYY) levels and bone mineral density (BMD) in women with anorexia nervosa. Bone. 2008;43(1):135–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Russell M, et al. Peptide YY in adolescent athletes with amenorrhea, eumenorrheic athletes and non-athletic controls. Bone. 2009;45(1):104–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Erdmann J, et al. Postprandial response of plasma ghrelin levels to various test meals in relation to food intake, plasma insulin, and glucose. J Clin Endocrinol Metab. 2004;89(6):3048–54.

    Article  CAS  PubMed  Google Scholar 

  34. Leidy HJ, et al. Circulating ghrelin is sensitive to changes in body weight during a diet and exercise program in normal-weight young women. J Clin Endocrinol Metab. 2004;89(6):2659–64.

    Article  CAS  PubMed  Google Scholar 

  35. Tschop M, et al. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–9.

    Article  CAS  PubMed  Google Scholar 

  36. Tolle V, et al. Balance in ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women. J Clin Endocrinol Metab. 2003;88(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  37. De Souza MJ, et al. Fasting ghrelin levels in physically active women: relationship with menstrual disturbances and metabolic hormones. J Clin Endocrinol Metab. 2004;89(7):3536–42.

    Article  PubMed  CAS  Google Scholar 

  38. Ackerman KE, et al. Higher ghrelin and lower leptin secretion are associated with lower LH secretion in young amenorrheic athletes compared with eumenorrheic athletes and controls. Am J Physiol Endocrinol Metab. 2012;302(7):E800–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lawson EA, et al. Hypercortisolemia is associated with severity of bone loss and depression in hypothalamic amenorrhea and anorexia nervosa. J Clin Endocrinol Metab. 2009;94(12):4710–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dueck CA, et al. Treatment of athletic amenorrhea with a diet and training intervention program. Int J Sport Nutr. 1996;6(1):24–40.

    CAS  PubMed  Google Scholar 

  41. Kopp-Woodroffe SA, et al. Energy and nutrient status of amenorrheic athletes participating in a diet and exercise training intervention program. Int J Sport Nutr. 1999;9(1):70–88.

    CAS  PubMed  Google Scholar 

  42. Mallinson RJ, et al. A case report of recovery of menstrual function following a nutritional intervention in two exercising women with amenorrhea of varying duration. J Int Soc Sports Nutr. 2013;10(1):34.

    Google Scholar 

  43. Loucks AB, Verdun M. Slow restoration of LH pulsatility by refeeding in energetically disrupted women. Am J Physiol. 1998;275(4 Pt 2):R1218–26.

    CAS  PubMed  Google Scholar 

  44. Heaney RP, et al. Peak bone mass. Osteoporos Int. 2000;11(12):985–1009.

    Article  CAS  PubMed  Google Scholar 

  45. Barrack MT, et al. Body mass, training, menses, and bone in adolescent runners: a 3-yr follow-up. Med Sci Sports Exerc. 2011;43(6):959–66.

    Google Scholar 

  46. Barrack MT, Ackerman KE, Gibbs JC. Update on the female athlete triad. Curr Rev Musculoskelet Med. 2013;6(2):195–204.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hilton LK, Loucks AB. Low energy availability, not exercise stress, suppresses the diurnal rhythm of leptin in healthy young women. Am J Physiol Endocrinol Metab. 2000;278(1):E43–9.

    CAS  PubMed  Google Scholar 

  48. Ihle R, Loucks AB. Dose-response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res. 2004;19(8):1231–40.

    Article  PubMed  Google Scholar 

  49. Jackson RD, Donepudi S, Mysiw WJ. Epidemiology of fracture risk in the women’s health initiative. Curr Osteoporos Rep. 2008;6(4):155–61.

    Article  PubMed  Google Scholar 

  50. Bennell KL, et al. Risk factors for stress fractures in track and field athletes. A twelve-month prospective study. Am J Sports Med. 1996;24(6):810–8.

    Article  CAS  PubMed  Google Scholar 

  51. Kelsey JL, et al. Risk factors for stress fracture among young female cross-country runners. Med Sci Sports Exerc. 2007;39(9):1457–63.

    Article  PubMed  Google Scholar 

  52. Loud KJ, et al. Family history predicts stress fracture in active female adolescents. Pediatrics. 2007;120(2):e364–72.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Frusztajer NT, et al. Nutrition and the incidence of stress fractures in ballet dancers. Am J Clin Nutr. 1990;51(5):779–83.

    CAS  PubMed  Google Scholar 

  54. Bennell KL, et al. Risk factors for stress fractures in female track-and-field athletes: a retrospective analysis. Clin J Sport Med. 1995;5(4):229–35.

    Article  CAS  PubMed  Google Scholar 

  55. Korpelainen R, et al. Risk factors for recurrent stress fractures in athletes. Am J Sports Med. 2001;29(3):304–10.

    CAS  PubMed  Google Scholar 

  56. Popp KL, et al. Bone geometry, strength, and muscle size in runners with a history of stress fracture. Med Sci Sports Exerc. 2009;41(12):2145–50.

    Article  PubMed  Google Scholar 

  57. Nattiv A, et al. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes. Am J Sports Med. 2013;41(8):1930–41.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Guest NS, Barr SI. Cognitive dietary restraint is associated with stress fractures in women runners. Int J Sport Nutr Exerc Metab. 2005;15(2):147–59.

    PubMed  Google Scholar 

  59. Barrow GW, Saha S. Menstrual irregularity and stress fractures in collegiate female distance runners. Am J Sports Med. 1988;16(3):209–16.

    Article  CAS  PubMed  Google Scholar 

  60. Goolsby MA NA, Casper J. Predictors for stress fracture and stress fracture rate in male and female collegiate track athletes: a prospective analysis. American Medical Society for Sports Medicine Annual Meeting, 2008.

    Google Scholar 

  61. Lloyd T, et al. Women athletes with menstrual irregularity have increased musculoskeletal injuries. Med Sci Sports Exerc. 1986;18(4):374–9.

    Article  CAS  PubMed  Google Scholar 

  62. Kadel NJ, Teitz CC, Kronmal RA. Stress fractures in ballet dancers. Am J Sports Med. 1992;20(4):445–9.

    Article  CAS  PubMed  Google Scholar 

  63. Barrack MT, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. American Medical Society for Sports Medicine Annual Meeting, 2014.

    Google Scholar 

  64. Rauh MJ, Nichols JF, Barrack MT. Relationships among injury and disordered eating, menstrual dysfunction, and low bone mineral density in high school athletes: a prospective study. J Athl Train. 45(3):243–52.

    Google Scholar 

  65. Benton D, Parker PY. Breakfast, blood glucose, and cognition. Am J Clin Nutr. 1998;67(4):S772–8.

    Google Scholar 

  66. Horvath PJ, et al. The effects of varying dietary fat on performance and metabolism in trained male and female runners. J Am Coll Nutr. 2000;19(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  67. Vanheest JL, et al. Ovarian suppression impairs sport performance in junior elite female swimmers. Med Sci Sports Exerc. 2014;46(1):156–66.

    Article  PubMed  Google Scholar 

  68. Zach KN, Smith Machin AL, Hoch AZ. Advances in management of the female athlete triad and eating disorders. Clin Sports Med. 2011;30(3):551–73.

    Article  PubMed  Google Scholar 

  69. Mendelsohn ME. Estrogen actions in the cardiovascular system. Climacteric. 2009;12 Suppl 1:18–21.

    Article  CAS  PubMed  Google Scholar 

  70. Anderson TJ, et al. Systemic nature of endothelial dysfunction in atherosclerosis. Am J Cardiol. 1995;75(6):71B–4B.

    Article  CAS  PubMed  Google Scholar 

  71. Zeni Hoch A, et al. Is there an association between athletic amenorrhea and endothelial cell dysfunction? Med Sci Sports Exerc. 2003;35(3):377–83.

    Article  PubMed  Google Scholar 

  72. Rickenlund A, et al. Amenorrhea in female athletes is associated with endothelial dysfunction and unfavorable lipid profile. J Clin Endocrinol Metab. 2005;90(3):1354–9.

    Google Scholar 

  73. Yoshida N, et al. Impaired endothelium-dependent and -independent vasodilation in young female athletes with exercise-associated amenorrhea. Arterioscler Thromb Vasc Biol. 2006;26(1):231–2.

    Article  CAS  PubMed  Google Scholar 

  74. Hoch AZ, et al. Association between the female athlete triad and endothelial dysfunction in dancers. Clin J Sport Med. 2011;21(2):119–25.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Torstveit MK, Sundgot-Borgen J. The female athlete triad: are elite athletes at increased risk? Med Sci Sports Exerc. 2005;37(2):184–93.

    Article  PubMed  Google Scholar 

  76. Martinsen M, Sundgot-Borgen J. Higher prevalence of eating disorders among adolescent elite athletes than controls. Med Sci Sports Exerc. 2013;45(6):1188–97.

    Article  PubMed  Google Scholar 

  77. Reinking MF, Alexander LE. Prevalence of disordered-eating behaviors in undergraduate female collegiate athletes and nonathletes. J Athl Train. 2005;40(1):47–51.

    PubMed  PubMed Central  Google Scholar 

  78. Sundgot-Borgen J, Torstveit MK. Prevalence of eating disorders in elite athletes is higher than in the general population. Clin J Sport Med. 2004;14(1):25–32.

    Article  PubMed  Google Scholar 

  79. Torstveit MK, Rosenvinge JH, Sundgot-Borgen J. Prevalence of eating disorders and the predictive power of risk models in female elite athletes: a controlled study. Scand J Med Sci Sports. 2008;18(1):108–18.

    Article  CAS  PubMed  Google Scholar 

  80. Sundgot-Borgen J, Torstveit MK. Aspects of disordered eating continuum in elite high-intensity sports. Scand J Med Sci Sports. 2010;20 Suppl 2:112–21.

    Article  PubMed  Google Scholar 

  81. Constantini NW, Warren MP. Special problems of the female athlete. Baillieres Clin Rheumatol. 1994;8(1):199–219.

    Article  CAS  PubMed  Google Scholar 

  82. Torstveit MK, Sundgot-Borgen J. Participation in leanness sports but not training volume is associated with menstrual dysfunction: a national survey of 1276 elite athletes and controls. Br J Sports Med. 2005;39(3):141–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Beals KA, Hill AK. The prevalence of disordered eating, menstrual dysfunction, and low bone mineral density among US collegiate athletes. Int J Sport Nutr Exerc Metab. 2006;16(1):1–23.

    PubMed  Google Scholar 

  84. Dadgostar H, et al. The relation between athletic sports and prevalence of amenorrhea and oligomenorrhea in Iranian female athletes. Sports Med Arthrosc Rehabil Ther Technol. 2009;1(1):16.

    PubMed  PubMed Central  Google Scholar 

  85. Nichols JF, et al. Disordered eating and menstrual irregularity in high school athletes in lean-build and nonlean-build sports. Int J Sport Nutr Exerc Metab. 2007;17(4):364–77.

    PubMed  Google Scholar 

  86. Gibbs JC, Williams NI, De Souza MJ. Prevalence of individual and combined components of the female athlete triad. Med Sci Sports Exerc. 2013;45(5):985–96.

    Article  PubMed  Google Scholar 

  87. Quah YV, et al. The female athlete triad among elite Malaysian athletes: prevalence and associated factors. Asia Pac J Clin Nutr. 2009;18(2):200–8.

    PubMed  Google Scholar 

  88. Thompson SH. Characteristics of the female athlete triad in collegiate cross-country runners. J Am Coll Health. 2007;56(2):129–36.

    Article  PubMed  Google Scholar 

  89. Hulley AJH, Hill AJ. Eating disorders and health in elite women distance runners. Int J Eat Disord. 2001;30:312–17.

    Article  CAS  PubMed  Google Scholar 

  90. Nichols JF, et al. Prevalence of the female athlete triad syndrome among high school athletes. Arch Pediatr Adolesc Med. 2006;160(2):137–42.

    Article  PubMed  Google Scholar 

  91. Cobb KL, et al. Disordered eating, menstrual irregularity, and bone mineral density in female runners. Med Sci Sports Exerc. 2003;35(5):711–9.

    Article  PubMed  Google Scholar 

  92. Barrack MT, Rauh MJ, Nichols JF. Prevalence of and traits associated with low BMD among female adolescent runners. Med Sci Sports Exerc. 2008;40(12):2015–21.

    Article  PubMed  Google Scholar 

  93. Gibson JH, et al. Nutritional and exercise-related determinants of bone density in elite female runners. Osteoporos Int. 2004;15(8):611–8.

    Article  PubMed  Google Scholar 

  94. van Hooff MH, et al. The use of oral contraceptives by adolescents for contraception, menstrual cycle problems or acne. Acta Obstet Gynecol Scand. 1998;77(9):898–904.

    Article  PubMed  Google Scholar 

  95. Warren MP, Chua AT. Exercise-induced amenorrhea and bone health in the adolescent athlete. Ann N Y Acad Sci. 2008;1135:244–52.

    Article  PubMed  Google Scholar 

  96. Dusek T. Influence of high intensity training on menstrual cycle disorders in athletes. Croat Med J. 2001;42(1):79–82.

    CAS  PubMed  Google Scholar 

  97. Mudd LM, Fornetti W, Pivarnik JM. Bone mineral density in collegiate female athletes: comparisons among sports. J Athl Train. 2007;42(3):403–8.

    PubMed  PubMed Central  Google Scholar 

  98. Robinson TL, et al. Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. J Bone Miner Res. 1995;10(1):26–35.

    Article  CAS  PubMed  Google Scholar 

  99. DiGioacchino DeBate R, Wethington H, Sargent R. Sub-clinical eating disorder characteristics among male and female triathletes. Eat Weight Disord. 2002;7(3):210–20.

    Article  CAS  PubMed  Google Scholar 

  100. DiGioacchino DeBate R, Wethington H, Sargent R. Body size dissatisfaction among male and female triathletes. Eat Weight Disord. 2002;7(4):316–23.

    Article  CAS  PubMed  Google Scholar 

  101. Hoch AZ, Stavrakos JE, Schimke JE. Prevalence of female athlete triad characteristics in a club triathlon team. Arch Phys Med Rehabil. 2007;88(5):681–2.

    Article  PubMed  Google Scholar 

  102. Thompson RA, Sherman RT. Eating disorders in sport. New York: Routledge; 2010.

    Google Scholar 

  103. Nichols JF, Palmer JE, Levy SS. Low bone mineral density in highly trained male master cyclists. Osteoporos Int. 2003;14(8):644–9.

    Article  PubMed  Google Scholar 

  104. da Costa NF, et al. Disordered eating among adolescent female swimmers: dietary, biochemical, and body composition factors. Nutrition. 2013;29(1):172–7.

    Google Scholar 

  105. Anderson C, Petrie TA. Prevalence of disordered eating and pathogenic weight control behaviors among NCAA division I female collegiate gymnasts and swimmers. Res Q Exerc Sport. 83(1):120–4.

    Google Scholar 

  106. Torstveit MK, Sundgot-Borgen J. Low bone mineral density is two to three times more prevalent in non-athletic premenopausal women than in elite athletes: a comprehensive controlled study. Br J Sports Med. 2005;39(5):282–7; discussion 282–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gomez-Bruton A, et al. Is bone tissue really affected by swimming? A systematic review. PLoS ONE. 2013;8(8):e70119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Monsma EV, Malina RM, Feltz DL. Puberty and physical self-perceptions of competitive female figure skaters: an interdisciplinary approach. Res Q Exerc Sport. 2006;77(2):158–66.

    PubMed  Google Scholar 

  109. Smolak L, Murnen SK, Ruble AE. Female athletes and eating problems: a meta-analysis. Int J Eat Disord. 2000;27(4):371–80.

    Article  CAS  PubMed  Google Scholar 

  110. Van Durme K, Goossens L, Braet C. Adolescent aesthetic athletes: a group at risk for eating pathology? Eat Behav. 2012;13(2):119–22.

    Article  PubMed  Google Scholar 

  111. Ziegler P, et al. Energy and macronutrient intakes of elite figure skaters. J Am Diet Assoc. 2001;101(3):319–25.

    Article  CAS  PubMed  Google Scholar 

  112. Sundgot-Borgen J. Eating disorders in female athletes. Sports Med. 1994;17(3):176–88.

    Article  CAS  PubMed  Google Scholar 

  113. Davison KK, Earnest MB, Birch LL. Participation in aesthetic sports and girls’ weight concerns at ages 5 and 7 years. Int J Eat Disord. 2002;31(3):312–7.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Davison KK, Markey CN, Birch LL. A longitudinal examination of patterns in girls’ weight concerns and body dissatisfaction from ages 5 to 9 years. Int J Eat Disord. 2003;33(3):320–32.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ziegler PJ, et al. Dietary intake, body image perceptions, and weight concerns of female US international synchronized figure skating teams. Int J Sport Nutr Exerc Metab. 2005;15(5):550–66.

    PubMed  Google Scholar 

  116. Thein-Nissenbaum JM, et al. Menstrual irregularity and musculoskeletal injury in female high school athletes. J Athl Train. 2012;47(1):74–82.

    PubMed  PubMed Central  Google Scholar 

  117. Hincapie CA, Cassidy JD. Disordered eating, menstrual disturbances, and low bone mineral density in dancers: a systematic review. Arch Phys Med Rehabil. 2010;91(11):1777–1789.e1.

    Article  PubMed  Google Scholar 

  118. Klentrou P, Plyley M. Onset of puberty, menstrual frequency, and body fat in elite rhythmic gymnasts compared with normal controls. Br J Sports Med. 2003;37(6):490–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vadocz EA, Siegel SR, Malina RM. Age at menarche in competitive figure skaters: variation by competency and discipline. J Sports Sci. 2002;20(2):93–100.

    Article  PubMed  Google Scholar 

  120. Helge EW, Kanstrup IL. Bone density in female elite gymnasts: impact of muscle strength and sex hormones. Med Sci Sports Exerc. 2002;34(1):174–80.

    Article  PubMed  Google Scholar 

  121. Smith AD. The young skater. Clin Sports Med. 2000;19(4):741–55.

    Article  CAS  PubMed  Google Scholar 

  122. Oleson CV, Busconi BD, Baran DT. Bone density in competitive figure skaters. Arch Phys Med Rehabil. 2002;83(1):122–8.

    Article  PubMed  Google Scholar 

  123. Bemben DA, et al. Influence of type of mechanical loading, menstrual status, and training season on bone density in young women athletes. J Strength Cond Res. 2004;18(2):220–6.

    PubMed  Google Scholar 

  124. Maimoun L, et al. Despite a high prevalence of menstrual disorders, bone health is improved at a weight-bearing bone site in world-class female rhythmic gymnasts. J Clin Endocrinol Metab. 2013;98(12):4961–9.

    Article  CAS  PubMed  Google Scholar 

  125. Munoz MT, et al. Changes in bone density and bone markers in rhythmic gymnasts and ballet dancers: implications for puberty and leptin levels. Eur J Endocrinol. 2004;151(4):491–6.

    Article  CAS  PubMed  Google Scholar 

  126. Ducher G, et al. History of amenorrhoea compromises some of the exercise-induced benefits in cortical and trabecular bone in the peripheral and axial skeleton: a study in retired elite gymnasts. Bone. 2009;45(4):760–7.

    Article  CAS  PubMed  Google Scholar 

  127. Artioli GG, et al. Prevalence, magnitude, and methods of rapid weight loss among judo competitors. Med Sci Sports Exerc. 2010;42(3):436–42.

    Article  PubMed  Google Scholar 

  128. Pettersson S, Pipping Ekstrom M, Berg CM. The food and weight combat. A problematic fight for the elite combat sports athlete. Appetite. 2012;59(2):234–42.

    Article  PubMed  Google Scholar 

  129. Dale KS, Landers DM. Weight control in wrestling: eating disorders or disordered eating? Med Sci Sports Exerc. 1999;31(10):1382–9.

    Article  CAS  PubMed  Google Scholar 

  130. Sundgot-Borgen J, Garthe I. Elite athletes in aesthetic and Olympic weight-class sports and the challenge of body weight and body compositions. J Sports Sci. 2011;29 Suppl 1:S101–14.

    Article  PubMed  Google Scholar 

  131. Tenforde AS, Fredericson M. Influence of sports participation on bone health in the young athlete: a review of the literature. PM R. 2011;3(9):861–7.

    Article  PubMed  Google Scholar 

  132. Prouteau S, et al. Bone density in elite judoists and effects of weight cycling on bone metabolic balance. Med Sci Sports Exerc. 2006;38(4):694–700.

    Article  PubMed  Google Scholar 

  133. Cohen B, et al. Effect of exercise training programme on bone mineral density in novice college rowers. Br J Sports Med. 1995;29(2):85–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Morris FL, Payne WR, Wark JD. The impact of intense training on endogenous estrogen and progesterone concentrations and bone mineral acquisition in adolescent rowers. Osteoporos Int. 1999;10(5):361–8.

    Article  CAS  PubMed  Google Scholar 

  135. Dimitriou L, et al. Bone mineral density, rib pain and other features of the female athlete triad in elite lightweight rowers. BMJ Open. 2014;4(2):e004369.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Movaseghi S, et al. Clinical manifestations of the female athlete triad among some Iranian athletes. Med Sci Sports Exerc. 2012;44(5):958–65.

    Article  PubMed  Google Scholar 

  137. Ackerman KE, et al. Estradiol levels predict bone mineral density in male collegiate athletes: a pilot study. Clin Endocrinol (Oxf). 2012;76(3):339–45.

    Article  CAS  Google Scholar 

  138. Karila TA, et al. Rapid weight loss decreases serum testosterone. Int J Sports Med. 2008;29(11):872–7.

    Article  CAS  PubMed  Google Scholar 

  139. Muller W. Towards research-based approaches for solving body composition problems in sports: ski jumping as a heuristic example. Br J Sports Med. 2009;43(13):1013–9.

    Article  CAS  PubMed  Google Scholar 

  140. Moore JM, et al. Weight management and weight loss strategies of professional jockeys. Int J Sport Nutr Exerc Metab. 2002;12(1):1–13.

    PubMed  Google Scholar 

  141. Dolan E, et al. Nutritional, lifestyle, and weight control practices of professional jockeys. J Sports Sci. 2011;29(8):791–9.

    Article  PubMed  Google Scholar 

  142. Leydon MA, Wall C. New Zealand jockeys’ dietary habits and their potential impact on health. Int J Sport Nutr Exerc Metab. 2002;12(2):220–37.

    CAS  PubMed  Google Scholar 

  143. Dolan E, et al. Weight regulation and bone mass: a comparison between professional jockeys, elite amateur boxers, and age, gender and BMI matched controls. J Bone Miner Metab. 2012;30(2):164–70.

    Article  PubMed  Google Scholar 

  144. Dolan E, et al. An altered hormonal profile and elevated rate of bone loss are associated with low bone mass in professional horse-racing jockeys. J Bone Miner Metab. 2012;30(5):534–42.

    Article  CAS  PubMed  Google Scholar 

  145. Warrington G, et al. Chronic weight control impacts on physiological function and bone health in elite jockeys. J Sports Sci. 2009;27(6):543–50.

    Article  PubMed  Google Scholar 

  146. Chan JL, Mantzoros CS. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet. 2005;366(9479):74–85.

    Article  CAS  PubMed  Google Scholar 

  147. Ackerman KE, et al. Higher ghrelin and lower leptin secretion are associated with lower LH secretion in young amenorrheic athletes compared with eumenorrheic athletes and controls. Am J Physiol Endocrinol Metab. 2012;302(7):E800–6.

    Google Scholar 

  148. Loucks AB, Heath EM. Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am J Physiol. 1994;266(3 Pt 2):R817–23.

    CAS  PubMed  Google Scholar 

  149. Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311.

    Article  CAS  PubMed  Google Scholar 

  150. Yeager KK AR, Nattiv A, Drinkwater B. The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc. 1993;25:775–77.

    Article  PubMed  Google Scholar 

  151. Hoch AZ, et al. Prevalence of the female athlete triad in high school athletes and sedentary students. Clin J Sport Med. 2009;19(5):421–8.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Barrack MT, Rauh MJ, Nichols JF. Cross-sectional evidence of suppressed bone mineral accrual among female adolescent runners. J Bone Miner Res. 2010;(8):1850–7

    Google Scholar 

  153. Barrack MT, et al. Body mass, training, menses, and bone in adolescent runners: a three-year follow-up. Med Sci Sports Exerc. 2011;4(6):959–66

    Google Scholar 

  154. Litsky F. Wrestling; collegiate wrestling deaths raise fears about training. The New York Times. Dec. 19th, New York, NY; 1997.

    Google Scholar 

  155. Hackney AC, Fahrner CL, Stupnicki R. Reproductive hormonal responses to maximal exercise in endurance-trained men with low resting testosterone levels. Exp Clin Endocrinol Diabetes. 1997;105(5):291–5.

    Article  CAS  PubMed  Google Scholar 

  156. Hackney AC. The male reproductive system and endurance exercise. Med Sci Sports Exerc. 1996;28(2):180–9.

    Article  CAS  PubMed  Google Scholar 

  157. Hackney AC. Endurance training and testosterone levels. Sports Med. 1989;8(2):117–27.

    Article  CAS  PubMed  Google Scholar 

  158. Hackney AC, Sinning WE, Bruot BC. Reproductive hormonal profiles of endurance-trained and untrained males. Med Sci Sports Exerc. 1988;20(1):60–5.

    Article  CAS  PubMed  Google Scholar 

  159. Arce JC, et al. Subclinical alterations in hormone and semen profile in athletes. Fertil Steril. 1993;59(2):398–404.

    Article  CAS  PubMed  Google Scholar 

  160. Fredericson M, et al. Regional bone mineral density in male athletes: a comparison of soccer players, runners and controls. Br J Sports Med. 2007;41(10):664–8; discussion 668.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Bilanin JE, Blanchard MS, Russek-Cohen E. Lower vertebral bone density in male long distance runners. Med Sci Sports Exerc. 1989;21(1):66–70.

    Article  CAS  PubMed  Google Scholar 

  162. Kemmler W, et al. Bone status in elite male runners. Eur J Appl Physiol. 2006;96(1):78–85.

    Article  PubMed  Google Scholar 

  163. Hind K, Truscott JG, Evans JA. Low lumbar spine bone mineral density in both male and female endurance runners. Bone. 2006;39(4):880–5.

    Article  CAS  PubMed  Google Scholar 

  164. Bennell KL, Brukner PD, Malcolm SA. Effect of altered reproductive function and lowered testosterone levels on bone density in male endurance athletes. Br J Sports Med. 1996;30(3):205–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Arends JC, et al. Restoration of menses with nonpharmacologic therapy in college athletes with menstrual disturbances: a 5-year retrospective study. Int J Sport Nutr Exerc Metab. 2012;22(2):98–108.

    CAS  PubMed  Google Scholar 

  166. Fredericson M, Kent K. Normalization of bone density in a previously amenorrheic runner with osteoporosis. Med Sci Sports Exerc. 2005;37(9):1481–6.

    Article  PubMed  Google Scholar 

  167. Miller BE, et al. Sublingual administration of micronized estradiol and progesterone, with and without micronized testosterone: effect on biochemical markers of bone metabolism and bone mineral density. Menopause. 2000;7(5):318–26.

    Article  CAS  PubMed  Google Scholar 

  168. Vescovi JD, Jamal SA, De Souza MJ. Strategies to reverse bone loss in women with functional hypothalamic amenorrhea: a systematic review of the literature. Osteoporos Int. 2008;19(4):465–78.

    Article  CAS  PubMed  Google Scholar 

  169. Nazem TG, Ackerman KE. The female athlete triad. Sports Health. 2012;4(4):302–11.

    Google Scholar 

  170. Ettinger B, et al. Effects of ultralow-dose transdermal estradiol on bone mineral density: a randomized clinical trial. Obstet Gynecol. 2004;104(3):443–51.

    Article  CAS  PubMed  Google Scholar 

  171. Warming L, Ravn P, Christiansen C. Levonorgestrel and 17beta-estradiol given transdermally for the prevention of postmenopausal osteoporosis. Maturitas. 2005;50(2):78–85.

    Article  CAS  PubMed  Google Scholar 

  172. Misra M, et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J Bone Miner Res. 2011;26(10):2430–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chou SH, et al. Leptin is an effective treatment for hypothalamic amenorrhea. Proc Natl Acad Sci U S A. 2011;108(16):6585–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Welt CK, et al. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med. 2004;351(10):987–97.

    Article  CAS  PubMed  Google Scholar 

  175. Institute of Medicine 2010, November 30. Institute of Medicine of The National Academies. Dietary reference intakes tables and application. http://www.iom.edu/Activities/Nutrition/SummaryDRIs/DRI-Tables.aspx. Accessed 27 March 2014.

  176. Thiel A. Are psychotropic drugs necessary for the treatment of anorexia and bulimia nervosa? Psychother Psychosom Med Psychol. 1997;47(9–10):332–45.

    CAS  PubMed  Google Scholar 

  177. Zhu AJ, Walsh BT. Pharmacologic treatment of eating disorders. Can J Psychiatry. 2002;47(3):227–34.

    PubMed  Google Scholar 

  178. Couturier J, et al. Bone mineral density in adolescents with eating disorders exposed to selective serotonin reuptake inhibitors. Eat Disord. 2013;21(3):238–48.

    Article  PubMed  Google Scholar 

  179. Tsapakis EM, et al. The adverse skeletal effects of selective serotonin reuptake inhibitors. Eur Psychiatry. 2012;27(3):156–69.

    Article  CAS  PubMed  Google Scholar 

  180. Miller SM, et al. Energy deficiency, menstrual disturbances, and low bone mass: what do exercising Australian women know about the female athlete triad? Int J Sport Nutr Exerc Metab. 2012;22(2):131–8.

    PubMed  Google Scholar 

  181. Feldmann JM, et al. Female adolescent athletes’ awareness of the connection between menstrual status and bone health. J Pediatr Adolesc Gynecol. 2011;24(5):311–4.

    Article  PubMed  Google Scholar 

  182. Troy K, Hoch AZ, Stavrakos JE. Awareness and comfort in treating the female athlete triad: are we failing our athletes? WMJ. 2006;105(7):21–4.

    PubMed  Google Scholar 

  183. Mencias T, Noon M, Hoch AZ. Female athlete triad screening in National Collegiate Athletic Association Division I athletes: is the preparticipation evaluation form effective? Clin J Sport Med. 2012;22(2):122–5.

    Article  PubMed  Google Scholar 

  184. Mountjoy M, et al. Female Athlete Triad Pre Participation Evaluation. Female Athlete Triad Coalition; 2008.

    Google Scholar 

  185. American Academy of Family Physicians eds. Preparticipation Physical Evaluation. 4th ed., ed. D.T. Berhardt and W.O. Roberts. American Academy of Pediatrics: Elk Grove Village, IL; 2010.

    Google Scholar 

  186. Elliot DL, et al. Long-term outcomes of the ATHENA (Athletes Targeting Healthy Exercise & Nutrition Alternatives) Program for Female High School Athletes. J Alcohol Drug Educ. 2008;52(2):73–92.

    PubMed  PubMed Central  Google Scholar 

  187. Becker CB, et al. Can we reduce eating disorder risk factors in female college athletes? A randomized exploratory investigation of two peer-led interventions. Body Image. 2012;9(1):31–42.

    Article  PubMed  Google Scholar 

  188. Arthur-Cameselle JN, Baltzell A. Learning from collegiate athletes who have recovered from eating disorders: advice to coaches, parents, and other athletes with eating disorders. J Appl Sport Psychol. 2012;24(1):1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Ackerman MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ackerman, K., Eguiguren, M., Barrack, M. (2016). Risk Biotypes and the Female Athlete Triad. In: Vaamonde, D., du Plessis, S., Agarwal, A. (eds) Exercise and Human Reproduction. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3402-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3402-7_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3400-3

  • Online ISBN: 978-1-4939-3402-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics