Skip to main content
Log in

Bone status in elite male runners

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of our study was to compare long distance runners to body mass index (BMI)- and age-matched healthy controls with respect to bone parameters at all relevant loaded and nonloaded skeletal sites. Furthermore, we assessed the effect of running volume on bone parameters. Twenty elite male runners (21.1 km<1:15 h; volume >75 km/week/year) participated in the study (RG), 11 age- and BMI-matched male subjects (28±5 years) served as nontraining controls (CG). Subjects with any medication or illness affecting bone metabolism or with a family history of osteoporosis were not included. Bone parameters at various sites (total body, lumbar spine, femoral neck/hip, calcaneus) were measured by dual energy X-ray (DXA), quantitative computed tomography and quantitative ultrasound. Body composition was assessed via DXA and bioimpedance analysis; nutritional parameters were determined by 5-day dietary protocols. Training variables were assessed by questionnaires. Compared with nontraining controls runners had significantly higher BMD at all loaded sites (calcaneus, lower limbs, femoral neck, pelvis, and trabecular lumbar spine). BMD at nonloaded sites (ribs, upper limbs, and skull) was slightly but not significantly higher in the runners. We observed a low (r=0.30), nonsignificant association between training volume (km/week/year) and trabecular BMD of the femoral neck, which disappeared after adjusting for age, BMI, and body fat in this group of highly trained male runners. The effect of long distance running per se on bone parameters is not deleterious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aloia JF, Cohn SH, Bab T, et al (1978) Skeletal mass and body composition in marathon runners. Metabolism 27:1793–1796

    Article  PubMed  CAS  Google Scholar 

  • Ashizawa N, Nonaka K, Michikami S, Mizuki T, Amagai H, Tokuyama K, Suzuki M (1999) Tomographical description of tennis-loaded radius: reciprocal relation between bone size and volumetric BMD. J Appl Physiol 86:1347–1351

    PubMed  CAS  Google Scholar 

  • Bennell KL, Malcolm SA, Khan KM, Thomas SA, Reid SJ, Brukner PD, Ebeling PR, Wark JD (1997) Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study. Bone 20:477–484

    Article  PubMed  CAS  Google Scholar 

  • Bilanin JE, Blanchard MS, Russek-Cohen E (1989) Lower vertebral bone density in male long distance runners. Med Sci Sports Exerc 21:66–70

    Article  PubMed  CAS  Google Scholar 

  • Blair SN, Dowda M, Pate RR, Kronenfeld J, Howe HG Jr., Parker G, Blair A, Fridinger F (1991) Reliability of long-term recall of participation in physical activity by middle-aged men and women. Am J Epidemiol 133:266–275

    PubMed  CAS  Google Scholar 

  • Brahm H, Strom H, Piehl-Aulin K, Mallmin H, Ljunghall S (1997) Bone metabolism in endurance trained athletes: a comparison to population-based controls based on DXA, SXA, quantitative ultrasound, and biochemical markers. Calcif Tissue Int 61:448–454

    Article  PubMed  CAS  Google Scholar 

  • Chae AE, Platen P, Antz R, Kühlmorgen J, Allolio B, Lehmann H, Schuhmann S, Kannenberg J (1994) Knochendichte bei Leistungssportler/innen aus verschiedenen Sportarten im Vergleich zu Sportstudent/innen und untrainierten Kontrollpersonen. In: Liesen H, Weiß M, Baum M (eds) Regulations- und Repaimechanismen. Springer, Paderborn, Germany

    Google Scholar 

  • Clarkson PM, Hayes EM (1995) Exercise and mineral status of athletes: calcium, magnesium, phosphorus, and iron. Med Sci Sports Exerc 27:831–843

    PubMed  CAS  Google Scholar 

  • Dalen N, Olsson KE (1974) Bone mineral content and physical activity. Acta Orthop Scand 45:170–174

    Article  PubMed  CAS  Google Scholar 

  • Douchi T, Kuwahata R, Matsuo T, Uto H, Oki TYN (2003) Relative contribution of lean and fat mass component to bone mineral density in males. J Bone Miner Metab 21:17–21

    Article  PubMed  CAS  Google Scholar 

  • Goodpaster BH, Costill DL, Trappe SW, Hughes GM (1996) The relationship of sustained exercise training and bone mineral density in aging male runners. Scand J Med Sci Sports 6:216–221

    Article  PubMed  CAS  Google Scholar 

  • Greene DA, Naughton GA, Briody JN, Kemp A, Woodhead H, Farpour-Lambert N (2004) Musculoskeletal health in elite male adolescent middle-distance runners. J Sci Med Sport 7:373–383

    Article  PubMed  CAS  Google Scholar 

  • Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27:351–357

    Article  PubMed  CAS  Google Scholar 

  • Haapasalo H, Sievanen H, Kannus P, Heinonen A, Oja P, Vuori I (1996) Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading. J Bone Miner Res 11:864–872

    Article  PubMed  CAS  Google Scholar 

  • Hamdy RC, Anderson JS, Whalen KE, Harvill LM (1994) Regional differences in bone density of young men involved in different exercises. Med Sci Sports Exerc 26:884–888

    PubMed  CAS  Google Scholar 

  • Hetland ML, Haarbo J, Christiansen C (1993) Low bone mass and high bone turnover in male long distance runners. J Clin Endocrinol Metab 77:770–775

    Article  PubMed  CAS  Google Scholar 

  • Hetland ML, Haarbo J, Christiansen C, Larsen T (1993) Running induces menstrual disturbances but bone mass is unaffected, except in amenorrheic women. Am J Med 95:53–60

    Article  PubMed  CAS  Google Scholar 

  • Kalender WA, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M, Fraga J (1989) Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography. Eur J Rad 9:75–80

    CAS  Google Scholar 

  • Kalender WA, Klotz E, Süss C (1987) Vertebral bone mineral analysis: an integrated approach with CT. Radiology 164:419–423

    PubMed  CAS  Google Scholar 

  • Kang Y (2003) 3D Quantitative Computed Tomography (QCT) of the proximal femur. Doctoral-Thesis Institute of Medical Physics. Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, pp 99

    Google Scholar 

  • Kemmler W (2000) Körperliche Belastung und Osteoporose - Einfluss eines intensiven 9-monatigen körperlichen Trainings auf Knochendichte, Gesamtkalzium und Wirbelkörperbreite bei Frauen mit unterschiedlichem Belastungsniveau in der Vergangenheit. Osteologie 9:114–123

    Google Scholar 

  • Kemmler W, Engelke K, Lauber D, Weineck J, Hensen J, Kalender WA (2003) The Erlangen Fitness Osteoporosis Prevention Study (EFOPS) - a controlled exercise trial in early postmenopausal women with low bone density: First year results. Arch Phys Med Rehabil 84:673–683

    PubMed  Google Scholar 

  • Kemmler W, Weineck J, Kalender WA, Engelke K (2004) The effect of habitual physical activity, nonathletic exercise, muscle strength, and VO2max on bone parameters is rather low in early osteopenic postmenopausal women. J Muskuloskel Neuron Interact 4:325–334

    CAS  Google Scholar 

  • Lane NE, Bloch DA, Jones HH, Marshall WH, Wood PD, Fries JF (1986) Long-distance running, bone density and osteoarthritis. JAMA 255:1147–1151

    Article  PubMed  CAS  Google Scholar 

  • MacDougall JD, Webber CE, Martin J (1992) Relationship among running mileage, bone density, and serum testosterone in male runners. J Appl Physiol 73:1165–1170

    PubMed  CAS  Google Scholar 

  • Michel BA, Lane NE, Björkengren A, Bloch DA, Fries JF (1992) Impact of Running on Lumbar Bone Density: a 5-year longitudinal study. Journal of Rheumatology 19:1759–1763

    PubMed  CAS  Google Scholar 

  • Morel J, Combe B, Francisco J, Bernard J (2001) Bone mineral density of 704 amateur sportsmen involved in different physical activities. Osteoporos Int 12:152–157

    Article  PubMed  CAS  Google Scholar 

  • Mussolino ME, Looker AC, Orwoll ES (2001) Jogging and bone mineral density in men: results from NHANES III. Am J Public Health 91:1056–1059

    Article  PubMed  CAS  Google Scholar 

  • Nevill AM, Holder RL, Stewart AD (2003) Modeling elite male athletes’ peripheral bone mass, assessed using regional dual x-ray absorptiometry. Bone 32:62–68

    Article  PubMed  CAS  Google Scholar 

  • Nilsson BE, Westlin NE (1971) Bone density in athletes. Clin Orthop 77:179–182

    PubMed  CAS  Google Scholar 

  • Standing committee on the Scientific Evaluation of Dietary Reference Intakes IoM (1997) Dietary reference intakes:calcium, phosphorus,magnesium, Vitamin D, and flouride. Academic Press, Washington D.C

  • Stewart AD, Hannan J (2000) Total and regional bone density in male runners, cyclists, and controls. Med Sci Sports Exerc 32:1373–1377

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The study was funded by the Bundesinstitut für Sportwissenschaften, Bonn, Germany (VF 0407/01/28/2002–2004)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kemmler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemmler, W., Engelke, K., Baumann, H. et al. Bone status in elite male runners. Eur J Appl Physiol 96, 78–85 (2006). https://doi.org/10.1007/s00421-005-0060-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-005-0060-1

Keywords

Navigation