Skip to main content

Chapter 1a Metallic Biomaterials: Introduction

  • Chapter
  • First Online:
Handbook of Biomaterial Properties

Abstract

Metallic biomaterials are one of the most commonly used biomaterial groups along with ceramics, synthetic polymers, and naturally derived products. The utility of these metallic materials is based largely on the formation of a thin but protective oxide layer. The oxide layer forms upon exposure to oxygen and re-forms within milliseconds after damage [1]. This layer reduces corrosion in vivo, one of the major requirements of a robust biomaterial. The other requirements include biotolerability, bioadhesion, biofunctionality (bioactivity), and processability. In practice each metal or alloy, i.e., titanium alloys, stainless steel, and Co-Cr alloys, has their own advantages for different applications based on mechanical, chemical, and biofunctional properties. Generally, metallic biomaterials are used for structural applications such as implants, pins, and bone scaffolding due to their excellent mechanical properties such as Young’s modulus, tensile strength, ductility, fatigue, and wear resistance. However, they can be used for unloaded, purely functional devices such as cages for pumps, valves, and heart pacemakers. The first generation of metallic biomaterials was designed for minimal toxicity. The second generation has been designed for functionality at both at the mechanical and molecular level to enhance integration of the material into the biological environment and increase longevity of the implant. The third generation has focused not only on functionality but also on regeneration of the surrounding tissue in conjunction with the bioactive material [2]. In the following chapters the metallic biomaterials are characterized in terms of their composition, physical and mechanical properties, and their corrosion and biological behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Minagar S, Wang J, Berndt CC, Ivanova EP, Wen C (2013) Cell response of anodized nanotubes on titanium and titanium alloys. J Biomed Mater Res A 101A(9):2726–2739

    Article  Google Scholar 

  2. Mantripragada VP, Lecka-Czernik B, Ebraheim NA, Jayasuriya AC (2013) An overview of recent advances in designing orthopedic and craniofacial implants. J Biomed Mater Res A 101A(11):3349–3364

    Google Scholar 

  3. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903

    Article  Google Scholar 

  4. Raman A, Dubey M, Gouzman I, Gawalt ES (2006) Formation of Self-assembled monolayers of alkylphosphonic acid on the native oxide surface of SS316L. Langmuir 22:6469–6472

    Article  Google Scholar 

  5. Antunes RA, Lopes de Oliveria MC (2012) Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. Acta Biomater 8:937–962

    Article  Google Scholar 

  6. Singh R, Dahotre NB (2007) Corrosion degradation and prevention by surface modification of biometallic materials. J Mater Sci Mater Med 18:725–751

    Article  Google Scholar 

  7. Talha M, Behera CK, Sinha OP (2013) A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Mater Sci Eng C 33:3563–3575

    Article  Google Scholar 

  8. Zhang K, Liu T, Li J, Chen J, Wang J, Huang N (2014) Surface modification of implanted cardiovascular metal stents: from antithrombosis and antirestenosis to endothelialization. J Biomed Mater Res A 102A(2):588–609

    Article  Google Scholar 

  9. Guduru D, Niepel M, Vogel J, Groth T (2011) Nanostructured material surfaces—preparation, effect on cellular behavior, and potential biomedical applications: a review. J Artif Organs 34(10):963–985

    Article  Google Scholar 

  10. Kubashewski O, Evans EC, Alcock CB (1967) Metallurgical thermochemistry. Pergamon Press, London

    Google Scholar 

  11. Steinemann SG, Perren SM (1984) Titanium alloys as metallic biomaterials. In: Proc. of the 5th world conf. on titanium, vol 2, pp. 1327–1334

    Google Scholar 

  12. Zitter H (1976) Schädigung des Gewebes durch metallische Implantate. Unfallheilkunde 79:91

    Google Scholar 

  13. Zitter K, Plenk H, Strassl H (1980) Tissue and cell reactions in vivo and in vitro to different metals for dental implant. In: Heimke G (ed) Dental implants. C. Hanser, Miinchen, p 15

    Google Scholar 

  14. Ferguson AB, Akahashi Y, Laing PG, Hodge ES (1962) Characteristics of trace ions released from embedded metal implants in the rabbit. J Bone Joint Surg 44:323–336

    Article  Google Scholar 

  15. Pound BG (2014) Passive films on metallic biomaterials under stimulated physiological conditions. J Biomed Mater Res A 102A:1595–1604

    Article  Google Scholar 

  16. Breme J, Steinhäuser E, Paulus G (1988) Commercially pure titanium Steinhäuser plate–screw system for maxillo facial surgery. Biomaterials 9:310–313

    Article  Google Scholar 

  17. Lyndon JA, Boyd BJ, Birbilis N (2014) Metallic implant drug/device combinations for controlled drug release in orthopaedic applications. J Control Release 179:63–75

    Article  Google Scholar 

  18. Krekeler G, Schilli W (1984) Das ITI-Implantat Typ H: Technische Entwicklung, Tierexperiment und klinische Erfahrung. Chirurgische Zahnheilkunde 12:2253–2263

    Google Scholar 

  19. Kirsch A (1980) Titan-spritzbeschichtetes Zahnwurzel-implantat unter physiologischer Belastung beim Menschen. Dt ZahnärztlZ 35:112–114

    Google Scholar 

  20. Schröder A, van der Zypen E, Sutter F (1981) The reaction of bone, connective tissue and epithelium to endosteal implants with titanium- sprayed surface. J Maxillofac Surg 1981(9):15

    Article  Google Scholar 

  21. Brånemark PI, Adell R, Albrektsson T, Lekholm U, Lundkvist S, Rockier B (1983) Osseointegrated titanium fixtures in the treatment of edentulousness. Biomaterials 4:25

    Article  Google Scholar 

  22. Schröder A, Stich H, Strautmann F, Sutter F (1978) Über die Anlagerung von Osteozement an einem belasteten Implantatkörper. Schweiz Monatsschr Zahnheilk 4:1051–1058

    Google Scholar 

  23. Kydd WL, Daly CH (1976) Bone–titanium implant response to mechanical stress. J Prosthet Dent 35:567–571

    Article  Google Scholar 

  24. Golish SR, Anderson PA (2012) Bearing surfaces for total disc arthroplasty: metal-on-metal versus metal-on-polyethylene and other biomaterials. Spine J 12:693–701

    Article  Google Scholar 

  25. Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissues engineering: a review. Acta Biomater 8:1401–1421

    Article  Google Scholar 

  26. Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD (2014) A review on the wettability of dental implant surfaces: II. Biological and clinical aspects. Acta Biomater 10:2907–2918

    Article  Google Scholar 

  27. Purnama A, Hermawan H, Couet J, Mantovani D (2010) Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation. Acta Biomater 6:1800–1807

    Article  Google Scholar 

  28. Richards RG, Moriarty TF, Miclau T, McClellan RT, Grainger DW (2012) Advances in biomaterials and surface technologies. J Orthop Trauma 26(12):703–707

    Article  Google Scholar 

  29. Gittens RA, Olivares-Navarrete R, Schwartz Z, Boyan BD (2014) Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomater 10:3363–3371

    Article  Google Scholar 

  30. Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S (2010) Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 92:1218–1224

    Google Scholar 

  31. Tsukimura N, Ueno T, Iwasa F, Minamikawa H, Sugita Y, Ishizaki K et al (2011) Bone integration capability of alkali- and heat-treated nanobimorphic Ti-15Mo-5Zr-3Al. Acta Biomater 7:4267–4277

    Article  Google Scholar 

  32. Thakral GK, Thakral R, Sharma N, Seth J, Vashisht P (2014) Nanosurface—the future of implants. J Clin Diagn Res 8(5):7–10

    Google Scholar 

  33. Schmitz HJ, Gross V, Kinne R, Fuhrmann G, Strunz V (1988) Der Einfluβ unterschiedlicher Oberflächenstrukturierung plastischer Implantate auf das histologische Zugfestigkeitsverhalten des Interface. DVM-Vortragsreihe Implantate 7

    Google Scholar 

  34. Hayes JS, Richards RG (2010) The use of titanium and stainless steel in fracture fixation. Expert Rev Med Dev 7:843–853

    Article  Google Scholar 

  35. Hayes JS, Richards RG (2010) Surfaces to control tissue adhesion for osteosynthesis with metal implants: in vitro and in vivo studies to bring solutions to the patient. Expert Rev Med Dev 7:131–142

    Article  Google Scholar 

  36. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21(17):1803–1810

    Article  Google Scholar 

  37. Webster TJ, Gutwein LG, Tepper F (2008) Increased osteoblast function on nanofibered alumina. In: 26th annual conference on composites, advanced ceramics, materials, and structures B: ceramic engineering and science proceedings. John Wiley & Sons, Inc., pp. 817–824

    Google Scholar 

  38. Strassl H (1978) Experimentelle Studie über das Verhalten von titanbeschichteten Werkstoffen hinsichtlich der Gewebekompatibilität im Vergleich zu anderen Metallimplanteten. Teil 1. Osterr Z Stomatol 75(4):134–146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Gawalt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Breme, H., Biehl, V., Reger, N., Gawalt, E. (2016). Chapter 1a Metallic Biomaterials: Introduction. In: Murphy, W., Black, J., Hastings, G. (eds) Handbook of Biomaterial Properties. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3305-1_14

Download citation

Publish with us

Policies and ethics