Skip to main content

Emerging Trends in the Applications of Metallic and Ceramic Biomaterials

  • Chapter
  • First Online:
Bio-Materials and Prototyping Applications in Medicine

Abstract

This chapter discusses the different types of biomaterials used for medical applications. Metallic, ceramic, and nanomaterial-based biomaterials are classified and described based on their physical and biocompatibility properties. Various applications of these biomaterials are discussed. A new class of a biodegradable magnesium alloy with potential to replace and augment existing implant materials is elaborated. State of the art in biomaterial research is also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.F. Williams, Definitions in biomaterials, in Proceedings of a Consensus Conference of the European Society for Biomaterials, Vol. 4. Chester, England, March 3–5, 1986, (Elsevier, New York, 1987)

    Google Scholar 

  2. B.D. Ratner, S.J. Bryant, Biomaterials: Where we have been and where we are going. Annu. Rev. Biomed. Eng. 6, 41–75 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. D.F. Williams, Orthopedic implants: Fundamental principles and the significance of biocompatibility, in Biocompatibility of Orthopedic Implants, ed. by D. F. Williams, vol. 1, (CRC Press, Boca Raton, FL, 1982), pp. 1–50

    Google Scholar 

  4. I. Marquetti, S. Desai, Molecular Modeling the adsorption behavior of bone morphogenetic protein – 2 on hydrophobic and hydrophilic substrates. Chem. Phys. Lett. 706, 285–294 (2018)

    Article  CAS  Google Scholar 

  5. I. Marquetti, S. Desai, Adsorption behavior of bone morphogenetic protein-2 on a graphite substrate for biomedical applications. Am. J. Eng. Appl. Sci. 11(2), 1037–1044 (2018). https://doi.org/10.3844/ajeassp.2018.1037.1044

    Article  Google Scholar 

  6. A. Aljohani, S. Desai, 3D printing of porous scaffolds for medical applications. Am. J. Eng. Appl. Sci. 11(3), 1076–1085 (2018)

    Article  Google Scholar 

  7. I. Marquetti, S. Desai, Adsorption behavior of bone morphogenic protein (BMP-2) on nanoscale topographies. Proceedings of the ASME NanoEngineering for Medicine and Biology Conference, Los Angeles, CA, 2018

    Google Scholar 

  8. I. Marquetti, S. Desai, Molecular modeling of bone morphogenetic protein for tissue engineering applications. Proceedings of the Industrial Engineers Research Conference, Orlando, FL, 2018

    Google Scholar 

  9. T. Hanawa, Evaluation techniques of biomaterials in vitro. Sci. Technol. Adv. Mater. 3, 289–295 (2002)

    Article  CAS  Google Scholar 

  10. B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, 2nd edn. (Elsevier Academic Press, San Francisco, 2004)

    Google Scholar 

  11. R.J. Good, Contact angle, wetting, and adhesion: A critical review, in Contact Angle, Wettability and Adhesion, ed. by K. L. Mittal, (VSP Publishers, Netherlands, 1993)

    Google Scholar 

  12. C.J. Beeves, J.L. Robnison, Some observations on the influence of oxygen content on the fatigue behavior of α-titanium. J. Less-Common Met. 17, 345–352 (1969)

    Article  Google Scholar 

  13. H. Conrad, M. Doner, B. de Meester, Critical review: Deformation and fracture, in Titanium, Science and Technology, ed. by R. I. Jaffee, H. M. Burte, vol. 2, (TMS, Warrendale, PA, 1973)

    Google Scholar 

  14. M.J. Donachie Jr., Titanium: A Technical Guide (ASM International, Metals Park, OH, 1988), p. 11. ISBN 0871703092

    Google Scholar 

  15. Titanium. Columbia Encyclopedia, 6th edn. (Columbia University Press, 2000–2006, New York). ISBN 0787650153

    Google Scholar 

  16. Titanium. Encyclopedia Britannica, 2006

    Google Scholar 

  17. M.J. Donachie Jr., Titanium: A Technical Guide (Metals Park, OH, ASM International, 1988)., Chapter 4. ISBN 0871703092

    Google Scholar 

  18. G.Z. Chen, D.J. Fray, T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407, 361–364 (2000). https://doi.org/10.1038/35030069

    Article  CAS  PubMed  Google Scholar 

  19. H.J. Breme, V. Biehl, J.A. Helsen, Metals and implants, in Metals as Biomaterials, ed. by J. A. Helsen, H. J. Breme, (Wiley, Chichester, 1998), pp. 37–72

    Google Scholar 

  20. J.B. Park, Metallic biomaterials, in The Biomedical Engineering Handbook, ed. by J. D. Bronzino, (CRC Press, Boca Raton, 1995), pp. 537–551

    Google Scholar 

  21. J.E. Davies, B. Lowenberg, A. Shiga, The bone–titanium interface in vitro. J. Biomed. Mater. Res. 24, 1289–1306 (1990)

    Article  CAS  PubMed  Google Scholar 

  22. N.J. Hallab, J.J. Jacobs, J.L. Katz, Orthopedic applications, in Biomaterials Science—An Introduction to Materials in Medicine, ed. by B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, (Elsevier/Academic Press, San Diego, 2004), pp. 526–555

    Google Scholar 

  23. A.N. Cranin, J.E. Lemons, Dental implantation, in Biomaterials Science—An Introduction to Materials in Medicine, ed. by B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, (Elsevier/Academic Press, San Diego, 2004), pp. 555–572

    Google Scholar 

  24. DePuy Orthopaedics Inc. http://www.jointreplacement.com/xq/ASP.default/pg.content/content_id.84/mn.local/joint_id.5/joint_nm.Hip/local_id.4/qx/default.htm

  25. N. Tony, Report on stainless steel – A family of medical device materials. Business Briefing: Medical Device Manufacturing & Technology (2002)

    Google Scholar 

  26. H. Serhan, M. Slivka, T. Albert, S. Kwak, Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern? Spine J. 4(4), 379–387 (2004)

    Article  PubMed  Google Scholar 

  27. Carpenter Technology Corp, http://cartech.ides.com/datasheet.aspx?&I=101&E=6

  28. ConMed Linvatec Corporation, http://www.conmed.com/products-knee-fixation.php

  29. ConMed Linvatec Corporation, http://www.conmed.com/products-maninst-concept.php

  30. W.J. Buehler, J.V. Gilfrich, R.C. Wiley, Effect of characteristic temperatures of thermoelastic martensitic properties of alloys near composition TiNi. J. Appl. Phys. 34, 1475–1476 (1963)

    Article  CAS  Google Scholar 

  31. L.G. Machado, M.A. Savi, Medical applications of shape memory alloys. Braz. J. Med. Biol. Res. 36, 683–691 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. D.E. Hodgson, M.H. Wu, R.J. Biermann, Shape Memory Alloys, in Metals Handbook, vol. 2, (ASM International, Metals Park, Ohio, 1990), pp. 897–902

    Google Scholar 

  33. H. Kyogoku, S.J. Komatsu, Japan Society of Powder and. Powder Metall. 46(10), 1103 (1999)

    CAS  Google Scholar 

  34. S. Saito, T. Wachi, S. Hanada, Mater. Sci. Eng. A161, 91 (1992)

    Google Scholar 

  35. V.I. Itin, V.E. Gjunter, S.A. Shabalovskaya, R.L.C. Sachdeva, Mater. Charact. 32, 179 (1994)

    Article  CAS  Google Scholar 

  36. J.C. Hey, A.P. Jardine, Mat. Res. Soc. Symp. Proc. 360, 483 (1995)

    Article  CAS  Google Scholar 

  37. Z. Xu, C.K. Waters, G. Rajaram, J. Sankar, Preparation of porous nitinol material by hot-isostatic pressing. Proceedings of advances in materials processing for challenging environments, ASME International Mechanical Engineering Congress & Exposition, November 5–11, 2005, Orlando, Florida

    Google Scholar 

  38. Z. Xu, Center for Advanced Materials and Smart Structures (North Carolina A & T State University, Greensboro, North Carolina, USA, 2005)

    Google Scholar 

  39. D. Stockel, Nitinol medical devices and implants. Min. Invasive Ther. Allied Technol. 9, 81–88 (2000)

    Article  Google Scholar 

  40. A.R. Pelton, D. Stöckel, T.W. Duerig, Medical uses of nitinol. Mater. Sci. Forum 327–328, 63–70 (2000)

    Article  Google Scholar 

  41. D. Mantovani, Shape memory alloys: Properties and biomedical applications. J. Miner. Met. Mater. Soc. 52, 36–44 (2000)

    Article  CAS  Google Scholar 

  42. T.M. Duerig, A. Pelton, D. Stöckel, An overview of nitinol medical applications. Mater. Sci. Eng. A 273–275, 149–160 (1999)

    Article  Google Scholar 

  43. RX Acculink Carotid Stent System, Abbot Vascular Images courtesy of Abbott Vascular. (c) 2007 Abbott Laboratories. All Rights Reserved. http://www.abbottvascular.com/

  44. F.J. Gil, J.A. Planell, Shape memory alloys for medical applications. Proc. Inst. Mech. Eng. H 212(6), 473–488 (1998)

    Article  CAS  PubMed  Google Scholar 

  45. J. Stice, The use of superelasticity in guidewires and arthroscopic instrumentation, in Shape Memory in Engineering Aspects of Shape Memory Alloys, ed. by T. W. Duering, K. N. Melton, c. D Sto¨, C. M. Wayman, (Butterworth-Heinemann, London, 1990), pp. 483–486

    Chapter  Google Scholar 

  46. D.W. James, High damping for engineering applications. Mater. Sci. Eng. 4, 322 (1969)

    Article  Google Scholar 

  47. Y. Sekiguci, in Medical Applications in Shape Memory Alloys, ed. by H. Funakubo, (Gordon and Breach Science Publishers, London, 1984), pp. 10–23

    Google Scholar 

  48. X.F. Zhang, A study of shape memory alloy for medicine, in Shape Memory Alloy 86, Proceedings of the International Symposium on Shape Memory Alloys, China, (Academic Publishers, New York, 1986), pp. 24–28

    Google Scholar 

  49. M. Simon, R. Kaplow, E. Salzman, D.A. Freiman, Vena cava filter using thermal shape memory alloy. Radiology 125, 89–90 (1977)

    Article  Google Scholar 

  50. G.F. Andreasen, A clinical trial of alignment of teeth using a 0.019 inch thermal nitinol wire with a transition temperature range between 31 °C and 45 °C. Am. J. Orthod. 78, 528–536 (1980)

    Article  CAS  PubMed  Google Scholar 

  51. F. Miura, M. Mogi, Y. Ohura, M. Karibe, The superelastic japanese NiTi alloy wire for use in orthodontics. Am. J. Orthod. Dentofacial Orthop. 94(2), 89–96 (1988)

    Article  CAS  PubMed  Google Scholar 

  52. H.S. Han, Y.Y. Kim, Y.C. Kim, S.Y. Cho, P.R. Cha, H.K. Seok, S.J. Yang, Bone formation within the vicinity of biodegradable magnesium alloy implant in a rat femur model. Met. Mater. Int. 18(2), 243–247 (2012)

    Article  CAS  Google Scholar 

  53. M. Staiger, A. Pietack, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27(9), 1728–1734 (2006)

    Article  CAS  PubMed  Google Scholar 

  54. R.K. Rude, Magnesium deficiency: A cause of heterogeneous disease in humans. J. Bone Miner Res. 13, 749–758 (1998)

    Article  CAS  PubMed  Google Scholar 

  55. R. Siverman, H. Osborn, H.J. Runge, E.J. Gallagher, W. Chiang, J. Feldman, T. Gaeta, K. Freeman, B. Levin, N. Mancherje, S. Scharf, IV magnesium sulfate in the treatment of acute severe asthma: A multicenter randomized controlled trial. Chest 122(2), 489–497 (2002)

    Article  Google Scholar 

  56. H.G. Stuhlinger, Magnesium in cardiovascular disease. J. Clin. Basic Cardiol. 5(1), 55–59 (2002)

    CAS  Google Scholar 

  57. J. Perkins, Z. Xu, C. Smith, A. Roy, P.N. Kumta, J. Waterman, D. Conklin, S. Desai, Direct writing of polymeric coatings on magnesium alloy for tracheal stent applications. Ann. Biomed. Eng. 43(5), 1158–1165 (2015)

    Article  PubMed  Google Scholar 

  58. G. Song, S. Song, A possible biodegradable magnesium implant material. Adv. Eng. Mater. 9(4), 298–302 (2007)

    Article  CAS  Google Scholar 

  59. J.D. Santos, Ceramics in medicine, in Business Briefing: Medical Device Manufacturing and Technology, Greensboro, North Carolina, USA, (2002), pp. 1–2

    Google Scholar 

  60. A.S. Vlasov, T.A. Karabanova, Ceramics and medicine (review). Glas. Ceram. 50(9—10) (1994)

    Google Scholar 

  61. L.M. Rodríguez-Lorenzo, M. Vallet-Regí, J.M.F. Ferreira, M.P. Ginebra, C. Aparicio, J.A. Planell, Hydroxyapatite ceramic bodies with tailored mechanical properties for different applications. J. Biomed. Mater. Res. 60(1), 159–166 (2002)

    Google Scholar 

  62. Biomet® Hip Hydroxyapatite Joint Replacement Prostheses, Biomet Orthopedics, Inc. http://www.biomet.com/hcp/prodpage.cfm?s=0901&p=090F

  63. R.C. Garvie, R.H. Hannink, R.T. Pascoe, Ceramic steel. Nature 258(5537), 703–704 (1975)

    Article  CAS  Google Scholar 

  64. M. Yildirim, H. Fischer, R. Marx, D. Edelhoff, Invivo fracture resistance of implant supported all-ceramic restorations. J. Prosthet. Dent. 90(4), 325–331 (2003)

    Article  CAS  PubMed  Google Scholar 

  65. G. Kessler-Liechti, R. Mericske-Stern, Rehabilitation of an abraded occlusion with Procera-ZrO2 all-ceramic crowns. A case report. Schweiz. Monatsschr. Zahnmed. 116, 156–167 (2006)

    PubMed  Google Scholar 

  66. L. Rimondini, L. Cerroni, A. Carrassi, P. Torricelli, Bacterial colonization of zirconia ceramic surfaces: An in vitro and in vivo study. Int. J. Oral Maxillofac. Implants 17(6), 793–798 (2002)

    PubMed  Google Scholar 

  67. M. Degidi, L. Artese, A. Scarano, V. Perrotti, P. Gehrke, A. Piattelli, Inflammatory infiltrate, microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in peri-implant soft tissues around titanium and zirconium oxide healing caps. J. Periodontol. 77(1), 73–80 (2006)

    Article  CAS  PubMed  Google Scholar 

  68. Smith & Nephew Inc., Oxinium™ knee implant http://www.voteoxinium.com/1100_oxmaterial.html

Download references

Acknowledgments

This work was funded by the US National Science Foundation (NSF CMMI: Award 1663128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salil Desai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Desai, S., Bidanda, B., Bártolo, P.J. (2021). Emerging Trends in the Applications of Metallic and Ceramic Biomaterials. In: Bártolo, P.J., Bidanda, B. (eds) Bio-Materials and Prototyping Applications in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-35876-1_1

Download citation

Publish with us

Policies and ethics