Skip to main content

An Overview on Metallic and Ceramic Biomaterials

  • Conference paper
  • First Online:
Recent Advances in Manufacturing Processes and Systems

Abstract

Biomaterials used in implants or clinical instrumentation are commonly used for the re-alignment, replacement, and treatment of deteriorated tissues, broken structures, or other injuries. The study of biomaterials is primarily involved in the chemical and biology field collectively known as biochemistry, biology, tissue engineering, and material science. Appropriate material selection and their characterization is crucial consideration while manufacturing medical implants. The biomaterial used for different medical implants should possess desirable properties, mechanical strength, biostability, good corrosion resistance, and biocompatibility to get acquainted in the physiologic environments. However, many important researches in biomaterial science have come focusing on improving the physical, mechanical and chemical properties regarding the material of implant and thereby improvising the implant strength. This overview examines metallic and ceramics biomaterials which are commonly used biomaterials used in medical implants while primarily focusing on the composition, mechanical properties, advantages, limitations, and applications of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inspired by biology, from molecules to materials to machines (Committee on biomolecular materials and processes, National Research Council of the National Academies) (2008) The National Academies Press, Washington, DC

    Google Scholar 

  2. Sharma CP (2005) Biomaterials and artificial organs: few challenging areas. Trends Biomater Artif Organs 18(2):1–7

    Google Scholar 

  3. Black J (1982) The education of the biomaterialist: report of a survey. J Biomed Mater Res 17:159–177

    Article  Google Scholar 

  4. Peppas NA, Langer RL (1994) New challenges in biomaterials. Science 263(5154):1715–1720

    Article  Google Scholar 

  5. Albertsson A-C, Varma IK (2002) Aliphatic polyesters: synthesis, properties and applications, degradable aliphatic polyesters. Adv Polym Sci 157(2000):1–40

    Google Scholar 

  6. Bronzino JD (2000) The biomedical engineering handbook, vol 2, 2nd edn

    Google Scholar 

  7. Yoruc ABH, Sener BC (2012) Biomaterials. In: Prof. Kara S (ed). A roadmap of biomedical engineers and milestones. ISBN: 978-953-51-0609.

    Google Scholar 

  8. Niinomi M (2002) Recent metallic materials for biomedical applications. Metal Mater Trans A 33(3):477 86

    Google Scholar 

  9. Silver FH, Christiansen DL (2005) Biomaterials science and biocompatibility

    Google Scholar 

  10. Metallic Implant Materials, in Biomaterials (2007). Springer New York, 99–137

    Google Scholar 

  11. Tschernitschek, et al (2005) Non-alloyed titanium as a bioinert metal—a review. Quintessence Int 36:523–530

    Google Scholar 

  12. Niinomi M (2002) Recent metallic materials for biomedical applications. Metall Mater Trans A 33(3):477–486

    Article  Google Scholar 

  13. Koike M, Fujii H (2001) In vitro assessment of corrosive properties of titanium as a biomaterial. J Oral Rehabil 28:540–548

    Article  Google Scholar 

  14. Grosgogeat B, Reclaru L, Lissac M, Dalard F (1999) Measurement and evaluation of galvanic corrosion between titanium/Ti6Al4V implants and dental alloys by electrochemical techniques and auger spectrometry. Biomaterials 20:933–941

    Article  Google Scholar 

  15. Dobbs HS (1982) Fracture of titanium orthopaedic implants. J Mater Sci 17:2398–2404

    Article  Google Scholar 

  16. Pritchett JW (2020) Bicruciate total knee replacement. In: Rivière C, Vendittoli PA (eds) Personalized hip and knee joint replacement. Springer, Cham

    Google Scholar 

  17. Najefi A, Malhotra K, Chan O et al (2019) The Bologna-Oxford ankle replacement: a case series of clinical and radiological outcomes. Int Orthop (SICOT) 43:2333–2339

    Article  Google Scholar 

  18. Galván JC, Larrea MT, Braceras I, Multigner M, González-Carrasco JL (2017) In vitro corrosion behaviour of surgical 317LVM stainless steel modified by Si+ ion implantation—an electrochemical impedance spectroscopy study. J Alloys Compd 676:414–427

    Article  Google Scholar 

  19. Mansur MR, Wang J, Berndt CC (2013) Microstructure, composition and hardness of laser assisted hydroxyapatite and Ti-6Al-4V composite coatings. Surf Coat Technol 232:482–488

    Article  Google Scholar 

  20. Metallic materials. In: Davies JR (ed) (2003) Handbook of materials for medical devices. ASM International Materials Park, Ohio, 21–50

    Google Scholar 

  21. Muley SV, Vidvans AN, Chaudhari GP, Udainiya S (2017) An assessment of ultra fine grained 317L stainless steel for implant applications. Acta Biomater 30:408–419

    Google Scholar 

  22. Zhang P, Liu Z (2017) Physical-mechanical and electrochemical corrosion behaviors of additively manufactured Cr-Ni-based stainless steel formed by laser cladding. Mater Des 100:254–262

    Google Scholar 

  23. Hermawan H, Ramdan D, Djuansjah JRP (2009) Metals for biomedical applications

    Google Scholar 

  24. Plecko M et al (2012) Osseointegration and biocompatibility of different metal implants—a comparative experimental investigation in sheep. BMC Musculoskelet Disord 13(1):32

    Article  Google Scholar 

  25. Pramanik S, Agarwal AK, Rai KN (2005) Chronology of total hip joint replacement and materials development, 19:115–26

    Google Scholar 

  26. Yamamoto RH, Sumita M (1998) Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res 39(2):331–340

    Article  Google Scholar 

  27. Evans EJ, Thomas IT (1986) The in vitro toxicity of cobalt-chrome-molybdenum alloy and its constituent metals. Biomaterials 7(1):25–29

    Article  Google Scholar 

  28. Natiella JR, Armitage JE, Greene GW Jr, Meenaghan MA (1972) Current evaluations of dental implants. J Am Dent Assoc 84:1358–1361

    Article  Google Scholar 

  29. Haubenreich JE, Robinson FG, West KP, Frazer RQ (2005) Did we push dental ceramics too far? A brief history of ceramic dental implants. J Long Term Eff Med Implants 15(6):617–628

    Article  Google Scholar 

  30. Vallet-Regı´ M (2001) Ceramics for medical applications. J Chem Soc Dalton Trans 2:97–108

    Google Scholar 

  31. Bermejo R, Danzer R (2010) High failure resistance layered ceramics using crack bifurcation and interface delamination as reinforcement mechanisms. Eng Fract Mech 77(11):2126–2135

    Article  Google Scholar 

  32. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510

    Article  Google Scholar 

  33. Lantada AD (2000) Handbook of active materials for medical devices: advances and applications. Pan Stanford Publishing Pte. Ltd. 978-981-4303-36-1

    Google Scholar 

  34. Jarcho M (1986) Biomaterial aspects of calcium phosphates: properties and applications. Dent Clin North Am 30(1):25–47

    Article  Google Scholar 

  35. Muddugangadhar B, Shamanna A, Tripathi S, Dikshit S, Divya MS (2011) Biomaterials for dental implants: an overview. Int J Oral Implantol Clin Res 2:13–24

    Article  Google Scholar 

  36. Bosetti M, Verne E, Ferraris M, Ravaglioli A, Cannas M (2001) In vitro characterization of zirconia coated by bioactive glass. Biomaterials 22(9):987–994

    Article  Google Scholar 

  37. Schrooten J, Helsen JA (2000) Adhesion of bioactive glass coating to Ti6A14V oral implant. Biomaterials 21(14):1461–1469

    Article  Google Scholar 

  38. Renner AM (2001) The versatile use of titanium in implant prosthodontics. Quintessence Dent Techno:188–97

    Google Scholar 

  39. Ibrahim MZ, Sarhan AAD, Farazila Yusuf M, Hamdi, (2017) Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopaedic implants—a review article. J Alloy Compd 714:636–667

    Article  Google Scholar 

  40. Cicci`u M, Cervino G, Herford A et al (2018) Facial bone reconstruction using both marine or non-marine bone substitutes: evaluation of current outcomes in a systematic literature review. Mar Drugs 17(1):27

    Google Scholar 

  41. Herford AS, Cicci`u M, Efimie LF et al (2017) rhBMP-2 applied as support of distraction osteogenesis: a split-mouth histological study over nonhuman primates mandibles. Int J Clin Exp Med 9(9):17187–17194

    Google Scholar 

  42. Long M, Rack HJ (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19:1721–1739

    Article  Google Scholar 

  43. Niinomi M (2002) Recent metallic materials for biomedical applications. Metall Mater Trans A 33:477–486

    Article  Google Scholar 

  44. Evans FG (1976) Mechanical properties and histology of cortical bone from younger and older men. Anat Rec 185:1–11

    Article  Google Scholar 

  45. Dingô M, Dalstra M, Danielsen CC, Kabel J, Hvid I, Linde F (1997) Age variations in the properties of human tibial trabecular bone. J Bone J Surg 79:995–1002

    Article  Google Scholar 

  46. Gross S, Abel EW (2001) A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. J Biomech 34:995–1003

    Article  Google Scholar 

  47. Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T (1998) Design and mechanical properties of new β type titanium alloys for implant materials. Mater Sci Eng A 243:244–249

    Article  Google Scholar 

  48. Sakaguchi N, Niinomi M, Akahori T, Takeda J, Toda H (2005) Relationship between tensile deformation behavior and microstructure in Ti-Nb-Ta-Zr. Mater Sci Eng C 25:363–369

    Article  Google Scholar 

  49. Niinomi M, Akahori T, Katsura S, Yamauchi K, Ogawa M (2007) Mechanical characteristics and microstructure of drawn wire of Ti-29Nb-13Ta-4.6Zr for biomedical applications. Mater Sci Eng C 27:154–171

    Article  Google Scholar 

  50. Nag S, Banerjee R, Fraser HL (2005) Microstructural evolution and strengthening mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys. Mater Sci Eng C 25:357–362

    Article  Google Scholar 

  51. Rack HJ, Qazi JI (2006) Titanium alloys for biomedical applications. Mater Sci Eng C 26:1269–1277

    Article  Google Scholar 

  52. Wen CE, Yamada Y, Shimojima K, Sakaguchi Y, Chino Y, Hosokawa H, Mabuchi M (2002) Novel titanium foam for bone tissue engineering. J Mater Res 17:2633–2639

    Article  Google Scholar 

  53. Lopez-Heredia MA, Sohiera J, Gaillard C, Quillard S, Dorget M, Layrolle P (2008) Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials 29:2608–2615

    Article  Google Scholar 

  54. Yamada Y, Shimojima K, Sagaguchi Y, Mabuchi M, Nakamura M, Asahina T, Mukai T, Kanahashi H, Higashi K (2000) Processing of cellular magnesium materials. Adv Eng Mater 2:184–187

    Article  Google Scholar 

  55. Oh IH, Nomura N, Masahashi N, Hanada S (2003) Mechanical properties of porous titanium compacts prepared by powder sintering. Scr Mater 49:1197–1202

    Article  Google Scholar 

  56. Li H, Yu QF, Zhang B, Wang H, Fan HS, Zhang XD (2006) Fabrication and characterization of bioactive porous titanium. Rare Met Mater Eng 35:154–157

    Google Scholar 

  57. Li JP, Li SH, van-Blitterswijk CA, de-Groot KA (2005) Novel porous Ti6Al4V: characterization and cell attachment. J Biomed Mater Res 73A:223–233

    Google Scholar 

  58. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  Google Scholar 

  59. Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T (2001) Processing of biocompatible porous Ti and Mg. Scr Mater 45:1147–1153

    Article  Google Scholar 

  60. Esen Z, Bor S (2007) Processing of titanium foams using magnesium spacer particles. Scr Mater 56:341–344

    Article  Google Scholar 

  61. Laptev A, Vyal O, Bram M, Buchkremer HP, Stover D (2005) Green strength of powder compacts provided for production of highly porous titanium parts. Powder Metall 48:358–364

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kulkarni, S.V., Nemade, A.C., Sonawwanay, P.D. (2022). An Overview on Metallic and Ceramic Biomaterials. In: Dave, H.K., Dixit, U.S., Nedelcu, D. (eds) Recent Advances in Manufacturing Processes and Systems. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-7787-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-7787-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-7786-1

  • Online ISBN: 978-981-16-7787-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics