Skip to main content

Production of Recombinant Proteins in the Chloroplast of the Green Alga Chlamydomonas reinhardtii

  • Protocol
Recombinant Proteins from Plants

Abstract

Chloroplast transformation in the green algae Chlamydomonas reinhardtii can be used for the production of valuable recombinant proteins. Here, we describe chloroplast transformation of C. reinhardtii followed by protein detection. Genes of interest integrate stably by homologous recombination into the chloroplast genome following introduction by particle bombardment. Genes are inherited and expressed in lines recovered after selection in the presence of an antibiotic. Recombinant proteins can be detected by conventional techniques like immunoblotting and purified from liquid cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Demain A, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  CAS  PubMed  Google Scholar 

  2. Kindle K, Sodeinde O (1994) Nuclear and chloroplast transformation in Chlamydomonas reinhardtii: strategies for genetic manipulation and gene expression. J Appl Phycol 6:231–238

    Article  CAS  Google Scholar 

  3. Boynton J, Gillham N, Harris E et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    Article  CAS  PubMed  Google Scholar 

  4. Kindle K (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87:1228–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Economou C et al (2014) A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii. In: Maliga P (ed) Chloroplast biotechnology. Humana, New York, pp 401–411

    Chapter  Google Scholar 

  6. Dunahay T (1993) Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques 15:452–455

    CAS  PubMed  Google Scholar 

  7. Shimogawara K, Fujiwara S, Grossman A et al (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148:1821–1828

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Almaraz-Delgado A, Flores-Uribe J, Pérez-España V et al (2014) Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii. AMB Express 4:57

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rosales-Mendoza S, Paz-Maldonado L, Soria-Guerra R (2012) Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. Plant Cell Rep 31:479–494

    Article  CAS  PubMed  Google Scholar 

  10. Gimpel J, Hyun J, Schoepp N et al (2014) Production of recombinant proteins in microalgae at pilot greenhouse scale. Biotechnol Bioeng. doi:10.1002/bit.25357

    PubMed  Google Scholar 

  11. Dauvillée D, Delhaye S, Gruyer S et al (2010) Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules. PLoS One 5, e15424

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jones C, Luong T, Hannon M et al (2013) Heterologous expression of the C-terminal antigenic domain of the malaria vaccine candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 97:1987–1995

    Article  CAS  PubMed  Google Scholar 

  13. Yoon S, Kim S, Li K et al (2011) Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks. Appl Microbiol Biotechnol 91:553–563

    Article  CAS  PubMed  Google Scholar 

  14. Tran M, Van C, Barrera D et al (2013) Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci U S A 110:E15–E22

    Article  PubMed  Google Scholar 

  15. Bock R (2013) Strategies for metabolic pathway engineering with multiple transgenes. Plant Mol Biol 83:21–31

    Article  CAS  PubMed  Google Scholar 

  16. Su Z, Qian K, Tan C et al (2005) Recombination and heterologous expression of allophycocyanin gene in the chloroplast of Chlamydomonas reinhardtii. Acta Biochim Biophys Sin 37:709–712

    Article  CAS  PubMed  Google Scholar 

  17. Franklin S, Ngo B, Efuet E et al (2002) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J 30:733–744

    Article  CAS  PubMed  Google Scholar 

  18. Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res 19:4083–4089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bateman JM, Purton S (2000) Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Mol Gen Genet 263:404–410

    Article  CAS  PubMed  Google Scholar 

  20. Meslet-Cladiere L, Vallon O (2011) Novel shuttle markers for nuclear transformation of the green alga Chlamydomonas reinhardtii. Eukaryot Cell 10:1670–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harris E, Burkhart B, Gillham N et al (1989) Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome. Genetics 123:281–292

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Redding K, MacMillan F, Leibl W et al (1998) A systematic survey of conserved histidines in the core subunits of Photosystem I by site-directed mutagenesis reveals the likely axial ligands of P700. EMBO J 17:50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553

    Article  CAS  PubMed  Google Scholar 

  24. Rasala B, Muto M, Lee P et al (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8:719–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Newman S, Harris E, Johnson A et al (1992) Non-random distribution of chloroplast recombination events in Chlamydomonas reinhardtii: evidence for a hotspot and an adjacent cold region. Genetics 132:413–429

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Oey M, Ross IL, Hankamer B (2014) Gateway-assisted vector construction to facilitate expression of foreign proteins in the chloroplast of single celled algae. PLoS One 9:e86841

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  28. Cao M, Fu Y, Guo Y et al (2009) Chlamydomonas (Chlorophyceae) colony PCR. Protoplasma 235:107–110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SIP-IPN 20144606 and 20144617 support research in the laboratory of J.A.B.C. and N.V.D.F., respectively. ICYT-DF PIUTE-10-74 and PICSA-10-1974 support research in the laboratory of J.A.B.C. J.A.B.C. and N.V.D.F. are EDI and COFAA fellows. K.S.M.O., D.G.Z., and A.L.A.D. are recipients of a PhD scholarship from CONACYT-México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Agustín Badillo-Corona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Guzmán-Zapata, D., Macedo-Osorio, K.S., Almaraz-Delgado, A.L., Durán-Figueroa, N., Badillo-Corona, J.A. (2016). Production of Recombinant Proteins in the Chloroplast of the Green Alga Chlamydomonas reinhardtii . In: MacDonald, J., Kolotilin, I., Menassa, R. (eds) Recombinant Proteins from Plants. Methods in Molecular Biology, vol 1385. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3289-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3289-4_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3288-7

  • Online ISBN: 978-1-4939-3289-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics