Skip to main content

The Single-Cell Lab or How to Perform Single-Cell Molecular Analysis

  • Protocol
Whole Genome Amplification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1347))

Abstract

The increasing interest towards cellular heterogeneity within cell populations has pushed the development of new protocols to isolate and analyze single cells. PCR-based amplification techniques are widely used in this field. However, setting up an experiment and analyzing the results can sometimes be challenging. The aim of this chapter is to provide a general overview on single-cell PCR analysis focusing on the potential pitfalls and on the possible solutions to successfully perform the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujii H, Marsh C, Cairns P, Sidransky D, Gabrielson E (1996) Genetic divergence in the clonal evolution of breast cancer. Cancer Res 56(7):1493–1497

    CAS  PubMed  Google Scholar 

  2. Macintosh CA, Stower M, Reid N, Maitland NJ (1998) Precise microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Res 58(1):23–28

    CAS  PubMed  Google Scholar 

  3. Klein CA, Blankenstein TJ, Schmidt-Kittler O, Petronio M, Polzer B, Stoecklein NH, Riethmuller G (2002) Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360(9334):683–689. doi:10.1016/S0140-6736(02)09838-0

    Article  CAS  PubMed  Google Scholar 

  4. Tang DG (2012) Understanding cancer stem cell heterogeneity and plasticity. Cell Res 22(3):457–472. doi:10.1038/cr.2012.13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Passegue E, Jamieson CH, Ailles LE, Weissman IL (2003) Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A 100(Suppl 1):11842–11849. doi:10.1073/pnas.2034201100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440(7082):358–362. doi:10.1038/nature04599

    Article  CAS  PubMed  Google Scholar 

  7. Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314(5804):1464–1467. doi:10.1126/science.1131370

    Article  CAS  PubMed  Google Scholar 

  8. Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6(6):451–464. doi:10.1038/nrg1615

    Article  CAS  PubMed  Google Scholar 

  9. Coumans FA, van Dalum G, Beck M, Terstappen LW (2013) Filter characteristics influencing circulating tumor cell enrichment from whole blood. PLoS One 8(4), e61770. doi:10.1371/journal.pone.0061770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Posel C, Moller K, Frohlich W, Schulz I, Boltze J, Wagner DC (2012) Density gradient centrifugation compromises bone marrow mononuclear cell yield. PLoS One 7(12):e50293. doi:10.1371/journal.pone.0050293

    Article  PubMed Central  PubMed  Google Scholar 

  11. McNiece I, Briddell R, Stoney G, Kern B, Zilm K, Recktenwald D, Miltenyi S (1997) Large-scale isolation of CD34+ cells using the Amgen cell selection device results in high levels of purity and recovery. J Hematother 6(1):5–11

    Article  CAS  PubMed  Google Scholar 

  12. Johnson KW, Dooner M, Quesenberry PJ (2007) Fluorescence activated cell sorting: a window on the stem cell. Curr Pharm Biotechnol 8(3):133–139

    Article  CAS  PubMed  Google Scholar 

  13. Ibrahim SF, van den Engh G (2007) Flow cytometry and cell sorting. Adv Biochem Eng Biotechnol 106:19–39. doi:10.1007/10_2007_073

    CAS  PubMed  Google Scholar 

  14. Frohlich J, Konig H (2000) New techniques for isolation of single prokaryotic cells. FEMS Microbiol Rev 24(5):567–572

    Article  CAS  PubMed  Google Scholar 

  15. Barteneva NS, Ketman K, Fasler-Kan E, Potashnikova D, Vorobjev IA (2013) Cell sorting in cancer research–diminishing degree of cell heterogeneity. Biochim Biophys Acta 1836(1):105–122. doi:10.1016/j.bbcan.2013.02.004

    CAS  PubMed  Google Scholar 

  16. Fracasso T, Heinrich M, Hohoff C, Brinkmann B, Pfeiffer H (2009) Ultrasound-accelerated formalin fixation improves the preservation of nucleic acids extraction in histological sections. Int J Legal Med 123(6):521–525. doi:10.1007/s00414-009-0368-1

    Article  PubMed  Google Scholar 

  17. Cheng L, Zhang S, MacLennan GT, Williamson SR, Davidson DD, Wang M, Jones TD, Lopez-Beltran A, Montironi R (2013) Laser-assisted microdissection in translational research: theory, technical considerations, and future applications. Appl Immunohistochem Mol Morphol 21(1):31–47. doi:10.1097/PAI.0b013e31824d0519

    PubMed  Google Scholar 

  18. Kim JO, Kim HN, Hwang MH, Shin HI, Kim SY, Park RW, Park EY, Kim IS, van Wijnen AJ, Stein JL, Lian JB, Stein GS, Choi JY (2003) Differential gene expression analysis using paraffin-embedded tissues after laser microdissection. J Cell Biochem 90(5):998–1006. doi:10.1002/jcb.10680

    Article  CAS  PubMed  Google Scholar 

  19. Miura K, Bowman ED, Simon R, Peng AC, Robles AI, Jones RT, Katagiri T, He P, Mizukami H, Charboneau L, Kikuchi T, Liotta LA, Nakamura Y, Harris CC (2002) Laser capture microdissection and microarray expression analysis of lung adenocarcinoma reveals tobacco smoking- and prognosis-related molecular profiles. Cancer Res 62(11):3244–3250

    CAS  PubMed  Google Scholar 

  20. Lindeman N, Waltregny D, Signoretti S, Loda M (2002) Gene transcript quantitation by real-time RT-PCR in cells selected by immunohistochemistry-laser capture microdissection. Diagn Mol Pathol 11(4):187–192

    Article  PubMed  Google Scholar 

  21. Andersson H, van den Berg A (2004) Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol 15(1):44–49. doi:10.1016/j.copbio.2004.01.004

    Article  CAS  PubMed  Google Scholar 

  22. Edd JF, Di Carlo D, Humphry KJ, Koster S, Irimia D, Weitz DA, Toner M (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8(8):1262–1264. doi:10.1039/b805456h

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A 106(34):14195–14200. doi:10.1073/pnas.0903542106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Saliba AE, Saias L, Psychari E, Minc N, Simon D, Bidard FC, Mathiot C, Pierga JY, Fraisier V, Salamero J, Saada V, Farace F, Vielh P, Malaquin L, Viovy JL (2010) Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc Natl Acad Sci U S A 107(33):14524–14529. doi:10.1073/pnas.1001515107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Vona G, Sabile A, Louha M, Sitruk V, Romana S, Schutze K, Capron F, Franco D, Pazzagli M, Vekemans M, Lacour B, Brechot C, Paterlini-Brechot P (2000) Isolation by size of epithelial tumor cells : a new method for the immunomorphological and molecular characterization of circulatingtumor cells. Am J Pathol 156(1):57–63. doi:10.1016/S0002-9440(10)64706-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Shafiee H, Caldwell JL, Sano MB, Davalos RV (2009) Contactless dielectrophoresis: a new technique for cell manipulation. Biomed Microdevices 11(5):997–1006. doi:10.1007/s10544-009-9317-5

    Article  CAS  PubMed  Google Scholar 

  27. Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6(11):1445–1449. doi:10.1039/b605937f

    Article  PubMed  Google Scholar 

  28. Champlot S, Berthelot C, Pruvost M, Bennett EA, Grange T, Geigl EM (2010) An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. PloS One 5 (9). doi: 10.1371/journal.pone.0013042

    Google Scholar 

  29. Woyke T, Sczyrba A, Lee J, Rinke C, Tighe D, Clingenpeel S, Malmstrom R, Stepanauskas R, Cheng JF (2011) Decontamination of MDA reagents for single cell whole genome amplification. PLoS One 6(10):e26161. doi:10.1371/journal.pone.0026161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kampke T, Kieninger M, Mecklenburg M (2001) Efficient primer design algorithms. Bioinformatics 17(3):214–225

    Article  CAS  PubMed  Google Scholar 

  31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  32. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. doi:10.1186/1471-2105-13-134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Dennis Lo YM (1998) Setting up a PCR laboratory. Methods Mol Med 16:11–17. doi:10.1385/0-89603-499-2:11

    Google Scholar 

  34. Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64(10):3724–3730

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Qiu X, Wu L, Huang H, McDonel PE, Palumbo AV, Tiedje JM, Zhou J (2001) Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol 67(2):880–887. doi:10.1128/AEM.67.2.880-887.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wacker MJ, Godard MP (2005) Analysis of one-step and two-step real-time RT-PCR using SuperScript III. J Biomol Tech 16(3):266–271

    PubMed Central  PubMed  Google Scholar 

  37. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. BioTechniques 39(1):75–85

    Article  CAS  PubMed  Google Scholar 

  38. Stahlberg A, Kubista M, Pfaffl M (2004) Comparison of reverse transcriptases in gene expression analysis. Clin Chem 50(9):1678–1680. doi:10.1373/clinchem.2004.035469

    Article  CAS  PubMed  Google Scholar 

  39. Dietmaier W, Hartmann A, Wallinger S, Heinmoller E, Kerner T, Endl E, Jauch KW, Hofstadter F, Ruschoff J (1999) Multiple mutation analyses in single tumor cells with improved whole genome amplification. Am J Pathol 154(1):83–95. doi:10.1016/S0002-9440(10)65254-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13(3):718–725

    Article  CAS  PubMed  Google Scholar 

  41. Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A 89(13):5847–5851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Himmelbauer H, Schalkwyk LC, Lehrach H (2000) Interspersed repetitive sequence (IRS)-PCR for typing of whole genome radiation hybrid panels. Nucleic Acids Res 28(2), e7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, Lasken RS (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 99(8):5261–5266. doi:10.1073/pnas.082089499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264(15):8935–8940

    CAS  PubMed  Google Scholar 

  46. Silander K, Saarela J (2008) Whole genome amplification with Phi29 DNA polymerase to enable genetic or genomic analysis of samples of low DNA yield. Methods Mol Biol 439:1–18. doi:10.1007/978-1-59745-188-8_1

    Article  CAS  PubMed  Google Scholar 

  47. Lasken RS (2009) Genomic DNA amplification by the multiple displacement amplification (MDA) method. Biochem Soc Trans 37(Pt 2):450–453. doi:10.1042/BST0370450

    Article  CAS  PubMed  Google Scholar 

  48. Lovmar L, Syvanen AC (2006) Multiple displacement amplification to create a long-lasting source of DNA for genetic studies. Hum Mutat 27(7):603–614. doi:10.1002/humu.20341

    Article  CAS  PubMed  Google Scholar 

  49. Han T, Chang CW, Kwekel JC, Chen Y, Ge Y, Martinez-Murillo F, Roscoe D, Tezak Z, Philip R, Bijwaard K, Fuscoe JC (2012) Characterization of whole genome amplified (WGA) DNA for use in genotyping assay development. BMC Genomics 13:217. doi:10.1186/1471-2164-13-217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Junier P, Kim OS, Hadas O, Imhoff JF, Witzel KP (2008) Evaluation of PCR primer selectivity and phylogenetic specificity by using amplification of 16S rRNA genes from betaproteobacterial ammonia-oxidizing bacteria in environmental samples. Appl Environ Microbiol 74(16):5231–5236. doi:10.1128/AEM.00288-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Ishii K, Fukui M (2001) Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl Environ Microbiol 67(8):3753–3755. doi:10.1128/AEM.67.8.3753-3755.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF (2005) PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol 71(12):8966–8969. doi:10.1128/AEM.71.12.8966-8969.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62(2):625–630

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12(2):R18. doi:10.1186/gb-2011-12-2-r18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. von Wintzingerode F, Gobel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21(3):213–229

    Article  Google Scholar 

  56. Wagner A, Blackstone N, Cartwright P, Dick M, Misof B, Snow P, Wagner GP, Bartels J, Murtha M, Pendleton J (1994) Surveys of gene families using polymerase chain reaction: PCR selection and PCR drift. Syst Biol 43(2):250–261

    Article  Google Scholar 

  57. Suzuki M, Rappe MS, Giovannoni SJ (1998) Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl Environ Microbiol 64(11):4522–4529

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Kroneis T, Geigl JB, El-Heliebi A, Auer M, Ulz P, Schwarzbraun T, Dohr G, Sedlmayr P (2011) Combined molecular genetic and cytogenetic analysis from single cells after isothermal whole-genome amplification. Clin Chem 57(7):1032–1041. doi:10.1373/clinchem.2011.162131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Voet T, Kumar P, Van Loo P, Cooke SL, Marshall J, Lin ML, Zamani Esteki M, Van der Aa N, Mateiu L, McBride DJ, Bignell GR, McLaren S, Teague J, Butler A, Raine K, Stebbings LA, Quail MA, D’Hooghe T, Moreau Y, Futreal PA, Stratton MR, Vermeesch JR, Campbell PJ (2013) Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res 41(12):6119–6138. doi:10.1093/nar/gkt345

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Corneveaux JJ, Kruer MC, Hu-Lince D, Ramsey KE, Zismann VL, Stephan DA, Craig DW, Huentelman MJ (2007) SNP-based chromosomal copy number ascertainment following multiple displacement whole-genome amplification. BioTechniques 42(1):77–83

    Article  CAS  PubMed  Google Scholar 

  61. Paez JG, Lin M, Beroukhim R, Lee JC, Zhao X, Richter DJ, Gabriel S, Herman P, Sasaki H, Altshuler D, Li C, Meyerson M, Sellers WR (2004) Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res 32(9), e71. doi:10.1093/nar/gnh069

    Article  PubMed Central  PubMed  Google Scholar 

  62. Arriola E, Lambros MB, Jones C, Dexter T, Mackay A, Tan DS, Tamber N, Fenwick K, Ashworth A, Dowsett M, Reis-Filho JS (2007) Evaluation of Phi29-based whole-genome amplification for microarray-based comparative genomic hybridisation. Lab Invest 87(1):75–83. doi:10.1038/labinvest.3700495

    Article  CAS  PubMed  Google Scholar 

  63. Lage JM, Leamon JH, Pejovic T, Hamann S, Lacey M, Dillon D, Segraves R, Vossbrinck B, Gonzalez A, Pinkel D, Albertson DG, Costa J, Lizardi PM (2003) Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH. Genome Res 13(2):294–307. doi:10.1101/gr.377203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Bredel M, Bredel C, Juric D, Kim Y, Vogel H, Harsh GR, Recht LD, Pollack JR, Sikic BI (2005) Amplification of whole tumor genomes and gene-by-gene mapping of genomic aberrations from limited sources of fresh-frozen and paraffin-embedded DNA. J Mol Diagn 7(2):171–182. doi:10.1016/S1525-1578(10)60543-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24(3):133–141. doi:10.1016/j.tig.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  66. Chiang DY, Getz G, Jaffe DB, O’Kelly MJ, Zhao X, Carter SL, Russ C, Nusbaum C, Meyerson M, Lander ES (2009) High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat Methods 6(1):99–103. doi:10.1038/nmeth.1276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F, Kitzman JO, Baker C, Malig M, Mutlu O, Sahinalp SC, Gibbs RA, Eichler EE (2009) Personalized copy number and segmental duplication maps using next-generation sequencing. Nat Genet 41(10):1061–1067. doi:10.1038/ng.437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Baslan T, Kendall J, Rodgers L, Cox H, Riggs M, Stepansky A, Troge J, Ravi K, Esposito D, Lakshmi B, Wigler M, Navin N, Hicks J (2012) Genome-wide copy number analysis of single cells. Nat Protoc 7(6):1024–1041. doi:10.1038/nprot.2012.039

    Article  CAS  PubMed  Google Scholar 

  69. Mohlendick B, Bartenhagen C, Behrens B, Honisch E, Raba K, Knoefel WT, Stoecklein NH (2013) A robust method to analyze copy number alterations of less than 100 kb in single cells using oligonucleotide array CGH. PLoS One 8(6):e67031. doi:10.1371/journal.pone.0067031

    Article  PubMed Central  PubMed  Google Scholar 

  70. Zhang C, Zhang C, Chen S, Yin X, Pan X, Lin G, Tan Y, Tan K, Xu Z, Hu P, Li X, Chen F, Xu X, Li Y, Zhang X, Jiang H, Wang W (2013) A single cell level based method for copy number variation analysis by low coverage massively parallel sequencing. PLoS One 8(1):e54236. doi:10.1371/journal.pone.0054236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Dan S, Chen F, Choy KW, Jiang F, Lin J, Xuan Z, Wang W, Chen S, Li X, Jiang H, Leung TY, Lau TK, Su Y, Zhang W, Zhang X (2012) Prenatal detection of aneuploidy and imbalanced chromosomal arrangements by massively parallel sequencing. PLoS One 7(2):e27835. doi:10.1371/journal.pone.0027835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Alunni-Fabbroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kirchner, R., Alunni-Fabbroni, M. (2015). The Single-Cell Lab or How to Perform Single-Cell Molecular Analysis. In: Kroneis, T. (eds) Whole Genome Amplification. Methods in Molecular Biology, vol 1347. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2990-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2990-0_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2989-4

  • Online ISBN: 978-1-4939-2990-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics