Skip to main content

The Strep-tag System for One-Step Affinity Purification of Proteins from Mammalian Cell Culture

  • Protocol
Affinity Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1286))

Abstract

The Strep-tag—or its improved version Strep-tagII—is an eight amino acid sequence that can be easily fused or conjugated to any protein or peptide of interest and that was engineered for high affinity toward streptavidin, which otherwise is widely known as a tight biotin-binding reagent. Especially in combination with immobilized Strep-Tactin, a mutant streptavidin specifically optimized toward the Strep-tagII, this system enables the facile one-step affinity purification of various biomolecules, including oligomeric and even membrane proteins. The Strep-tagII/Strep-Tactin interaction shows exquisite specificity, thus allowing efficient separation from host cell proteins, and it can be reversed simply by addition of biotin (or a suitable derivative thereof, such as desthiobiotin). Therefore, this system has become very popular for the highly efficient affinity chromatography under biochemically mild conditions. Here, we describe the purification of Strep-tagged proteins from mammalian cell lysates and cell culture supernatants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmidt TGM, Skerra A (1993) The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng 6:109–122

    Article  CAS  PubMed  Google Scholar 

  2. Schmidt TGM, Koepke J, Frank R, Skerra A (1996) Molecular interaction between the Strep-tag affinity peptide and its cognate target streptavidin. J Mol Biol 255:753–766

    Article  CAS  PubMed  Google Scholar 

  3. Voss S, Skerra A (1997) Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng 10:975–982

    Article  CAS  PubMed  Google Scholar 

  4. Korndörfer IP, Skerra A (2002) Improved affinity of engineered streptavidin for the Strep-tag II peptide is due to a fixed open conformation of the lid-like loop at the binding site. Protein Sci 11:883–893

    Article  PubMed Central  PubMed  Google Scholar 

  5. Schmidt TGM, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2:1528–1535

    Article  CAS  PubMed  Google Scholar 

  6. Skerra A, Schmidt TGM (2000) Use of the Strep-tag and streptavidin for detection and purification of recombinant proteins. Methods Enzymol 326A:271–304

    Article  Google Scholar 

  7. http://www.iba-lifesciences.com/strep-tag.html

  8. Ostermeier C, Iwata S, Ludwig B, Michel H (1995) Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nat Struct Biol 2:842–846

    Article  CAS  PubMed  Google Scholar 

  9. Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody Fv fragment. Proc Natl Acad Sci USA 94:10547–10553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Schaffitzel C, Ban N (2007) Generation of ribosome nascent chain complexes for structural and functional studies. J Struct Biol 158:463–471

    Article  CAS  PubMed  Google Scholar 

  11. Groth A, Corpet A, Cook AJL, Roche D, Bartek J, Lukas J, Almouzni G (2007) Regulation of replication fork progression through histone supply and demand. Science 318:1928–1931

    Article  CAS  PubMed  Google Scholar 

  12. Johansen LD, Naumanen T, Knudsen A, Westerlund N, Gromova I, Junttila M, Nielsen C, Bøttzauw T, Tolkovsky A, Westermarck J, Coffey ET, Jäättelä M, Kallunki T (2008) IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration. J Cell Sci 121:854–864

    Article  CAS  PubMed  Google Scholar 

  13. Weber M, Wehling M, Lösel R (2008) Proteins interact with the cytosolic mineralocorticoid receptor depending on the ligand. Am J Physiol Heart Circ Physiol 295:361–365

    Article  Google Scholar 

  14. Gianni T, Amasio M, Campadelli-Fiume G (2009) Herpes simplex virus gD forms distinct complexes with fusion executors gB and gH/gL through the C-terminal profusion domain. J Biol Chem 284:17370–17382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Neumann K, Oellerich T, Urlaub H, Wienands J (2009) The B lymphocyte Grb2 interaction code. Immunol Rev 232:135–149

    Article  CAS  PubMed  Google Scholar 

  16. Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T (2009) Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol 11:1261–1267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Bekker-Jensen S, Rendtlew Danielsen J, Fugger K, Gromova I, Nerstedt A, Bartek J, Lukas J, Mailand N (2010) HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat Cell Biol 12:80–86

    Article  CAS  PubMed  Google Scholar 

  18. Jasencakova Z, Scharf AND, Ask K, Corpet A, Imhof A, Almouzni G, Groth A (2010) Replication stress interferes with histone recycling and predeposition marking of new histones. Mol Cell 37:736–743

    Article  CAS  PubMed  Google Scholar 

  19. Kubben N, Voncken JW, Demmers J, Calis C, van Almen G, Pint Y, Misteli T (2010) Identification of differential protein interactors of lamin A and progerin. Nucleus 1:513–525

    Article  PubMed Central  PubMed  Google Scholar 

  20. Varjosalo M, Sacco R, Stukalov A, van Drogen A, Planyavsky M, Hauri S, Aebersold R, Bennett KL, Colinge J, Gstaiger M, Superti-Furga G (2013) Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nat Methods 10:307–314

    Article  CAS  PubMed  Google Scholar 

  21. Junttila MR, Saarinen S, Schmidt T, Kast J, Westermarck J (2005) Single-step Strep-tag purification for the isolation and identification of protein complexes from mammalian cells. Proteomics 5:1199–1203

    Article  CAS  PubMed  Google Scholar 

  22. Jarchow S, Lück C, Görg A, Skerra A (2008) Identification of potential substrate proteins for the periplasmic Escherichia coli chaperone Skp. Proteomics 8:4987–4994

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt TGM, Batz L, Bonet L, Carl U, Holzapfel G, Kiem K, Matulewicz K, Niermeier D, Schuchardt I, Stanar K (2013) Development of the Twin-Strep-tag and its application for purification of recombinant proteins from cell culture supernatants. Protein Expr Purif 92:54–61

    Article  CAS  PubMed  Google Scholar 

  24. Schmidt TGM, Skerra A (1994) One-step affinity purification of bacterially produced proteins by means of the “Strep tag” and immobilized recombinant core streptavidin. J Chromatogr A 676:337–345

    Article  CAS  PubMed  Google Scholar 

  25. Skerra A, Schmidt TGM (1999) Applications of a peptide ligand for streptavidin: the Strep-tag. Biomol Eng 16:79–86

    Article  CAS  PubMed  Google Scholar 

  26. Hacker DL, Kiseljak D, Rajendra Y, Thurnheer S, Baldi L, Wurm FM (2013) Polyethyleneimine-based transient gene expression processes for suspension-adapted HEK-293E and CHO-DG44 cells. Protein Expr Purif 92:67–76

    Article  CAS  PubMed  Google Scholar 

  27. Geisse S, Voedisch B (2012) Transient expression technologies: past, present, and future. Methods Mol Biol 899:203–219

    Article  CAS  PubMed  Google Scholar 

  28. Geisse S, Fux C (2009) Recombinant protein production by transient gene transfer into mammalian cells. Methods Enzymol 463:223–238

    Article  CAS  PubMed  Google Scholar 

  29. Geisse S (2009) Reflections on more than 10 years of TGE approaches. Protein Expr Purif 64:99–107

    Article  CAS  PubMed  Google Scholar 

  30. Pham PL, Kamen A, Durocher Y (2006) Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol 34:225–237

    Article  CAS  PubMed  Google Scholar 

  31. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  PubMed  Google Scholar 

  32. See “Reagents compatible with Strep-tag/Strep-Tactin interaction” in the FAQ section. Available at http://www.iba-lifesciences.com/technical-support.html

  33. Weber PC, Wendoloski JJ, Pantoliano MW, Salemme FR (1992) Crystallographic and thermodynamic comparison of natural and synthetic ligands bound to streptavidin. J Am Chem Soc 114:3197–3200

    Article  CAS  Google Scholar 

  34. See “Biotin blocking” in the FAQ section. Available at http://www.iba-lifesciences.com/technical-support.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Skerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schmidt, T., Skerra, A. (2015). The Strep-tag System for One-Step Affinity Purification of Proteins from Mammalian Cell Culture. In: Reichelt, S. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 1286. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2447-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2447-9_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2446-2

  • Online ISBN: 978-1-4939-2447-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics