Skip to main content

An Orthogonal Fusion Tag for Efficient Protein Purification

  • Protocol
  • First Online:
Protein Downstream Processing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2178))

Abstract

In this chapter, we present an efficient method for stringent protein purification facilitated by a dual affinity tag referred to as ABDz1, which is based on a 5 kDa albumin-binding domain from Streptococcal Protein G. The small fusion tag enables an orthogonal affinity purification approach based on two successive and highly specific affinity purification steps. This approach is enabled by native binding of ABDz1 to human serum albumin and engineered binding to Staphylococcal Protein A, respectively. The ABDz1-tag can be fused to either terminus of a protein of interest and the purification steps can be carried out using standard laboratory equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wingfield PT (2015) Overview of the purification of recombinant proteins. Curr Protoc Protein Sci 80(6):1–35. https://doi.org/10.1002/0471140864.ps0601s80

    Article  PubMed  Google Scholar 

  2. Kimple ME, Brill AL, Pasker RL (2013) Overview of affinity tags for protein purification. Curr Protoc Protein Sci 73:Unit 9 9. https://doi.org/10.1002/0471140864.ps0909s73

    Article  Google Scholar 

  3. Porath J (1992) Immobilized metal ion affinity chromatography. Protein Expr Purif 3(4):263–281

    Article  CAS  PubMed  Google Scholar 

  4. Bolanos-Garcia VM, Davies OR (2006) Structural analysis and classification of native proteins from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim Biophys Acta 1760(9):1304–1313. https://doi.org/10.1016/j.bbagen.2006.03.027

    Article  CAS  PubMed  Google Scholar 

  5. Hu Y, Romao E, Vertommen D, Vincke C, Morales-Yanez F, Gutierrez C, Liu C, Muyldermans S (2017) Generation of nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins. Protein Expr Purif 137:64–76. https://doi.org/10.1016/j.pep.2017.06.016

    Article  CAS  PubMed  Google Scholar 

  6. Parsy CB, Chapman CJ, Barnes AC, Robertson JF, Murray A (2007) Two-step method to isolate target recombinant protein from co-purified bacterial contaminant SlyD after immobilised metal affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 853(1–2):314–319. https://doi.org/10.1016/j.jchromb.2007.03.046

    Article  CAS  PubMed  Google Scholar 

  7. Li Y (2010) Commonly used tag combinations for tandem affinity purification. Biotechnol Appl Biochem 55(2):73–83. https://doi.org/10.1042/BA20090273

    Article  CAS  PubMed  Google Scholar 

  8. Miladi B, Dridi C, El Marjou A, Boeuf G, Bouallagui H, Dufour F, Di Martino P, Elm’selmi A (2013) An improved strategy for easy process monitoring and advanced purification of recombinant proteins. Mol Biotechnol 55(3):227–235. https://doi.org/10.1007/s12033-013-9673-5

    Article  CAS  PubMed  Google Scholar 

  9. Waugh DS (2011) Reprint of: making the most of affinity tags. Protein Expr Purif. https://doi.org/10.1016/j.pep.2011.08.019

  10. Wood DW (2014) New trends and affinity tag designs for recombinant protein purification. Curr Opin Struct Biol 26:54–61. https://doi.org/10.1016/j.sbi.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  11. Nilvebrant J, Hober S (2013) The albumin-binding domain as a scaffold for protein engineering. Comput Struct Biotechnol J 6:e201303009. https://doi.org/10.5936/csbj.201303009

    Article  PubMed  Google Scholar 

  12. Alm T, Yderland L, Nilvebrant J, Halldin A, Hober S (2010) A small bispecific protein selected for orthogonal affinity purification. Biotechnol J 5(6):605–617. https://doi.org/10.1002/biot.201000041

    Article  CAS  PubMed  Google Scholar 

  13. Nilvebrant J, Alm T, Hober S, Lofblom J (2011) Engineering bispecificity into a single albumin-binding domain. PLoS One 6(10):e25791. https://doi.org/10.1371/journal.pone.0025791

    Article  CAS  PubMed  Google Scholar 

  14. Nilvebrant J, Astrand M, Georgieva-Kotseva M, Bjornmalm M, Lofblom J, Hober S (2014) Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin. PLoS One 9(8):e103094. https://doi.org/10.1371/journal.pone.0103094

    Article  CAS  PubMed  Google Scholar 

  15. Nilvebrant J, Astrand M, Lofblom J, Hober S (2013) Development and characterization of small bispecific albumin-binding domains with high affinity for ErbB3. Cell Mol Life Sci 70(20):3973–3985. https://doi.org/10.1007/s00018-013-1370-9

    Article  CAS  PubMed  Google Scholar 

  16. Kanje S, Venskutonyte R, Scheffel J, Nilvebrant J, Lindkvist-Petersson K, Hober S (2018) Protein engineering allows for mild affinity-based elution of therapeutic antibodies. J Mol Biol 430(18 Pt B):3427–3438. https://doi.org/10.1016/j.jmb.2018.06.004

    Article  CAS  PubMed  Google Scholar 

  17. Hansen S, Stuber JC, Ernst P, Koch A, Bojar D, Batyuk A, Pluckthun A (2017) Design and applications of a clamp for green fluorescent protein with picomolar affinity. Sci Rep 7(1):16292. https://doi.org/10.1038/s41598-017-15711-z

    Article  CAS  PubMed  Google Scholar 

  18. Nilvebrant J, Alm T, Hober S (2012) Orthogonal protein purification facilitated by a small bispecific affinity tag. J Vis Exp 59. https://doi.org/10.3791/3370

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia Hober .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nilvebrant, J., Åstrand, M., Hober, S. (2021). An Orthogonal Fusion Tag for Efficient Protein Purification. In: Labrou, N.E. (eds) Protein Downstream Processing. Methods in Molecular Biology, vol 2178. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0775-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0775-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0774-9

  • Online ISBN: 978-1-0716-0775-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics