Skip to main content

Synthesis and Evaluation of 18F-Labeled Fluoroalkyl Triphenylphosphonium Salts as Mitochondrial Voltage Sensors in PET Myocardial Imaging

  • Protocol
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1265))

Abstract

We have previously reported that radiolabeled phosphonium cations accumulate in the mitochondria down a transmembrane potential gradient. We present an optimized procedure for synthesis of three 18F-labeled fluoroalkyl triphenylphosphonium salts ([18F]FATPs) via two-step simple nucleophilic substitution reactions to develop new myocardial imaging agents for positron emission tomography (PET). The total reaction time of [18F]FATPs was within 60 min, and the overall decay-corrected radiochemical yield was approximately 15–30 % (decay corrected). Radiochemical purity was >98 % according to analytical high-performance liquid chromatography (HPLC). The specific activity of [18F]FATPs was >6.1 TBq/μmol. The micro-PET imaging studies in rats showed an initial spike of radioactivity, followed by myocardial retention and rapid clearance from background. The images from rats with an occluded left coronary artery demonstrated sharply defined myocardial defects in the corresponding area of the myocardium. This imaging technology may enable high throughput, multiple studies daily and wide distribution of PET myocardial studies in clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ohira H et al (2013) Current and future clinical applications of cardiac positron emission tomography. Circ J 77:836–848

    Article  PubMed  Google Scholar 

  2. Small GR et al (2013) Advances in cardiac SPECT and PET imaging: overcoming the challenges to reduce radiation exposure and improve accuracy. Can J Cardiol 29:275–284

    Article  PubMed  Google Scholar 

  3. Schwaiger M, Melin J (1999) Cardiological applications of nuclear medicine. Lancet 354:661–666

    Article  CAS  PubMed  Google Scholar 

  4. Gibbons RJ et al (2004) The quantification of infarct size. J Am Coll Cardiol 44:1533–1542

    Article  PubMed  Google Scholar 

  5. Knuuti J, Bengel FM (2008) Positron emission tomography and molecular imaging. Heart 94:360–367

    Article  CAS  PubMed  Google Scholar 

  6. Huisman MC et al (2008) Initial characterization of an 18F-labeled myocardial perfusion tracer. J Nucl Med 49:630–636

    Article  PubMed  Google Scholar 

  7. Yu M et al (2007) BMS-747158-02: a novel PET myocardial perfusion imaging agent. J Nucl Cardiol 14:789–798

    Article  CAS  PubMed  Google Scholar 

  8. Summerhayes IC et al (1982) Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells. Proc Natl Acad Sci U S A 79:5292–5296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chen LB (1988) Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4:155–181

    Article  CAS  PubMed  Google Scholar 

  10. Min JJ et al (2004) Tetraphenylphosphonium as a novel molecular probe for imaging tumors. J Nucl Med 45:636–643

    CAS  PubMed  Google Scholar 

  11. Kroemer G (2003) Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 304:433–435

    Article  CAS  PubMed  Google Scholar 

  12. Ross MF et al (2005) Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc) 70:222–230

    Article  CAS  Google Scholar 

  13. Fukuda H et al (1986) Use of 11C-triphenylmethylphosphonium for the evaluation of membrane potential in the heart by positron-emission tomography. Eur J Nucl Med 11:478–483

    CAS  PubMed  Google Scholar 

  14. Krause BJ et al (1994) Myocardial perfusion with [11C]methyl triphenyl phosphonium: measurements of the extraction fraction and myocardial uptake. J Nucl Biol Med 38:521–526

    CAS  PubMed  Google Scholar 

  15. Ravert HT et al (2004) Radiosynthesis of 3-[18F]fluoropropyl and 4-[18F]fluorobenzyl triarylphosphonium ions. J Label Compd Radiopharm 47:469–476

    Article  CAS  Google Scholar 

  16. Madar I et al (2007) Assessment of severity of coronary artery stenosis in a canine model using the PET agent 18F-fluorobenzyl triphenyl phosphonium: comparison with 99mTc-tetrofosmin. J Nucl Med 48:1021–1030

    Article  CAS  PubMed  Google Scholar 

  17. Madar I et al (2007) Characterization of membrane potential-dependent uptake of the novel PET tracer 18F-fluorobenzyl triphenylphosphonium cation. Eur J Nucl Med Mol Imaging 34:2057–2065

    Article  CAS  PubMed  Google Scholar 

  18. Madar I et al (2006) Characterization of uptake of the new PET imaging compound 18F-fluorobenzyl triphenyl phosphonium in dog myocardium. J Nucl Med 47:1359–1366

    CAS  PubMed  Google Scholar 

  19. Cheng Z et al (2005) Synthesis of (4-[18F]fluorophenyl)triphenylphosphonium as a potential imaging agent for mitochondrial dysfunction. J Label Compd Radiopharm 48:131–137

    Article  CAS  Google Scholar 

  20. Zhou Y, Liu S (2011) 64Cu-labeled phosphonium cations as PET radiotracers for tumor imaging. Bioconjug Chem 22:1459–1472

    Article  PubMed Central  PubMed  Google Scholar 

  21. Demura M, Kamo N, Kobatake Y (1987) Binding of lipophilic cations to the liposomal membrane: thermodynamic analysis. Biochim Biophys Acta 820:303–308

    Article  Google Scholar 

  22. Ono A et al (1994) Activation energy for permeation of phosphonium cations through phospholipid bilayer membrane. Biochemistry 33:4312–4318

    Article  CAS  PubMed  Google Scholar 

  23. Smith RA et al (2004) Targeting coenzyme Q derivatives to mitochondria. Methods Enzymol 382:45–67

    Article  CAS  PubMed  Google Scholar 

  24. Kim D et al (2007) Synthesis of (4-[18F]fluorophenyl)triphenylphosphonium as a mitochondrial voltage sensor for PET. Nucl Med Mol Imaging 41:561–565

    Google Scholar 

  25. Kim DY et al (2012) Synthesis of [18F]-labeled (2-(2-fluoroethoxy)ethyl)triphenylphosphonium cation as a potential agent for myocardial imaging using positron emission tomography. Bioorg Med Chem Lett 22:319–322

    Article  CAS  PubMed  Google Scholar 

  26. Kim DY et al (2012) Synthesis of [18F]-labeled (6-fluorohexyl)triphenylphosphonium cation as a potential agent for myocardial imaging using positron emission tomography. Bioconjug Chem 23:431–437

    Article  CAS  PubMed  Google Scholar 

  27. Kim DY et al (2012) Synthesis of [18F]-labeled (2-(2-fluoroethoxy)ethyl)tris(4-methoxyphenyl)phosphonium cation as a potential agent for positron emission tomography myocardial imaging. Nucl Med Biol 39:1093–1098

    Article  CAS  PubMed  Google Scholar 

  28. Kim DY et al (2012) Evaluation of a mitochondrial voltage sensor, (18F-fluoropentyl)triphenylphosphonium cation, in a rat myocardial infarction model. J Nucl Med 53:1779–1785

    Article  CAS  PubMed  Google Scholar 

  29. Schepis T et al (2007) Absolute quantification of myocardial blood flow with 13N-ammonia and 3-dimensional PET. J Nucl Med 48:1783–1789

    Article  CAS  PubMed  Google Scholar 

  30. Siegrist PT et al (2008) 13N-ammonia myocardial perfusion imaging with a PET/CT scanner: impact on clinical decision making and cost-effectiveness. Eur J Nucl Med Mol Imaging 35:889–895

    Article  PubMed  Google Scholar 

  31. Zhao J, Huangfu X (2007) Arthroscopic treatment of nonunited anterior cruciate ligament tibial avulsion fracture with figure-of-8 suture fixation technique. Arthroscopy 23:405–410

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI13C0163), and was supported in part by the National Research Foundation of Korea (NRF-2012M2B2A4029856).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Joon Min .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kim, DY., Min, JJ. (2015). Synthesis and Evaluation of 18F-Labeled Fluoroalkyl Triphenylphosphonium Salts as Mitochondrial Voltage Sensors in PET Myocardial Imaging. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1265. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2288-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2288-8_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2287-1

  • Online ISBN: 978-1-4939-2288-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics