Skip to main content

Physiological Basis of Transcranial Magnetic Stimulation

  • Chapter
  • First Online:
Textbook of Neuromodulation
  • 2534 Accesses

Abstract

Transcranial magnetic stimulation (TMS), a noninvasive method of brain stimulation, has been used extensively to assess cortical reorganization in humans. In this review, we first discuss how TMS, was developed as a method of cortical stimulation, beginning with an examination of cortical electrical stimulation, which preceded TMS in animals and in humans. We describe the neuronal elements targeted by TMS and how these elements are evaluated by changes captured in epidural recording for the spinal cord and surface electromyographic recordings from limb muscles. Next, we identify the most frequent methodology used during TMS studies from coil designs (circle, figure of eight, double cone, and batwing coils) to the protocols in which each coil is most used to target different neuronal elements and the corticospinal pathway. We describe neurophysiological protocols using different patterns of TMS pulses, including paired-pulse protocols used to examine both intracortical and interhemispheric interactions within and between primary motor cortices. Finally, we highlight the use of TMS as a therapeutic technique for alleviating symptoms in individuals with motor disorder. Particularly, we focus on repetitive low- and high-frequency TMS, which are important tools to induce neuroplasticity to promote the recovery of function after injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1:1106–7.

    Article  CAS  PubMed  Google Scholar 

  2. Faraday M. The correspondence of Michael Faraday (Vol 1). In: James FAJL, editor. London: Institution of Electrical Engineers; 1991.

    Google Scholar 

  3. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, The Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120:2008–39.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Ferrier D. The functions of the brain. 2nd ed. New York, NY: G.P. Putnam’s Sons; 1886.

    Google Scholar 

  5. Thompson SP. A physiological effect of an alternating magnetic field. Proc R Soc Lond B Biol Sci. 1910;82:396–8.

    Article  Google Scholar 

  6. Bickford RG, Fremming BD. Neuronal stimulation by pulsed magnetic fields in animals and man. Dig. 6th Int. Conf. Med. Electron. & Biol. Eng. 1965;112:6–7.

    Google Scholar 

  7. Polson MJR, Barker AT, Freeston IL. Stimulation of nerve trunks with time-varying magnetic fields. Med Biol Eng Comput. 1982;20:243–4.

    Article  CAS  PubMed  Google Scholar 

  8. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285:227.

    Article  CAS  PubMed  Google Scholar 

  9. Rathelot JA, Strick PL. Muscle representation in the macaque motor cortex: an anatomical perspective. Proc Natl Acad Sci U S A. 2006;103:8257–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Rathelot JA, Strick PL. Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc Natl Acad Sci U S A. 2009;106:918–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Palmer E, Ashby P. Corticospinal projections to upper limb motoneurones in humans. J Physiol. 1992;448:397–412.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Brouwer B, Ashby P. Corticospinal projections to lower limb motoneurons in man. Exp Brain Res. 1992;89:649–54.

    Article  CAS  PubMed  Google Scholar 

  13. Petersen NT, Pyndt HS, Nielsen JB. Investigating human motor control by transcranial magnetic stimulation. Exp Brain Res. 2003;152:1–16.

    Article  PubMed  Google Scholar 

  14. Nielsen J, Petersen N, Ballegaard N. Latency of effects evoked by electrical and magnetic brain stimulation in lower limb motoneurons in man. J Physiol. 1995;484:791–802.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Patton HD, Amassian VE. Single and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol. 1954;17:345–63.

    CAS  PubMed  Google Scholar 

  16. Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, et al. Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol. 1989;412:449–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, et al. Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res. 1998;119:265–8.

    Article  PubMed  Google Scholar 

  18. Sakai K, Ugawa Y, Terao Y, Hanajima R, Furubayashi T, Kanazawa I. Preferential activation of different I waves by transcranial magnetic stimulation with a figure-of-eight-shaped coil. Exp Brain Res. 1977;113:24–32.

    Article  Google Scholar 

  19. Kernell D, Chien-Ping W. Responses of the pyramidal tract to stimulation of the baboon’s motor cortex. J Physiol. 1967;191:653–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Roth BJ, Saypol JM, Hallett M, Cohen LG. A theoretical calculation of the electric field induced in the cortex during magnetic stimulation. Electroencephalogr Clin Neurophysiol. 1991;81:47–56.

    Article  CAS  PubMed  Google Scholar 

  21. Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Rothwell JC, Thompson PD. Magnetic stimulation of the human brain can activate different neuronal elements when magnetic field direction is reversed. J Physiol. 1988;401:46P.

    Google Scholar 

  22. Trompetto C, Assini A, Buccolieri A, Marchese R, Abbruzzese G. Intracortical inhibition after paired transcranial magnetic stimulation depends on the current flow direction. Clin Neurophysiol. 1999;110:1106–10.

    Article  CAS  PubMed  Google Scholar 

  23. Ueno S, Tashiro T, Harada K. Localized stimulation of neural tissues in the brain by means of a paired configuration of time varying magnetic fields. J Appl Phys. 1988;64:5862.

    Article  Google Scholar 

  24. Barker AT, Freeston I. Transcranial magnetic stimulation. Scholarpedia. 2007;2:2936.

    Article  Google Scholar 

  25. Ueno S, Matsuda T, Hiwaki O. Localized stimulation of the human brain and spinal cord by a pair of opposing pulsed magnetic fields. J Appl Phys. 1990;67:5838.

    Article  Google Scholar 

  26. Stokić DS, McKay WB, Scott L, Sherwood AM, Dimitrijević MR. Intracortical inhibition of lower limb motor-evoked potentials after paired transcranial magnetic stimulation. Exp Brain Res. 1997;117:437–43.

    Article  PubMed  Google Scholar 

  27. Guzman-Lopez J, Costa J, Selvi A, Gonzalo B, Casanova-Molla J, Valls-Sole J. The effects of transcranial magnetic stimulation on vibratory-induced presynaptic inhibition of the soleus H reflex. Exp Brain Res. 2012;220:223–30.

    Article  PubMed  Google Scholar 

  28. Taylor JL, Gandevia SC. Noninvasive stimulation of the human corticospinal tract. J Appl Physiol. 1985;2004(96):1496–503.

    Google Scholar 

  29. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37:703–13.

    Article  CAS  PubMed  Google Scholar 

  30. Werhahn KJ, Taylor J, Ridding M, Meyer B-U, Rothwell JC. Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalogr Clin Neurophysiol. 1996;101:58–66.

    Article  CAS  PubMed  Google Scholar 

  31. Pinto AD, Chen R. Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp Brain Res. 2001;140:505–10.

    Article  CAS  PubMed  Google Scholar 

  32. Roy FD, Yang JF, Gorassini MA. Afferent regulation of leg motor cortex excitability after incomplete spinal cord injury. J Neurophysiol. 2010;103:2222–33.

    Article  PubMed  Google Scholar 

  33. Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, Insola A, et al. Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr Clin Neurophysiol. 1998;109:397–401.

    Article  PubMed  Google Scholar 

  34. Werhahn KJ, Fong JK, Meyer BU, Priori A, Rothwell JC, Day BL, et al. The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. Electroencephalogr Clin Neurophysiol. 1994;93:138–46.

    Article  CAS  PubMed  Google Scholar 

  35. Ni Z, Charab S, Gunraj C, Nelson AJ, Udupa K, Yeh I, et al. Transcranial magnetic stimulation in different current directions activates separate cortical circuits. J Neurophysiol. 2011;105:749–56.

    Article  PubMed  Google Scholar 

  36. Di Lazzaro V, Oliviero A, Saturno E, Pilato F, Insola A, Mazzone P, et al. The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. Exp Brain Res. 2001;138:268–73.

    Article  PubMed  Google Scholar 

  37. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471:501–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol. 2008;586:325–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ilic TV, Meintzschel F, Cleff U, Ruge D, Kessler KR, Ziemann U. Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. J Physiol. 2002;545:153–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W. The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res. 1996;109:127–35.

    Article  CAS  PubMed  Google Scholar 

  41. Pandya DN, Vignolo LA. Intra- and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. Brain Res. 1971;26:217–33.

    Article  CAS  PubMed  Google Scholar 

  42. Jenny AB. Commissural projections of the cortical hand motor area in monkeys. J Comp Neurol. 1979;188:137–45.

    Article  CAS  PubMed  Google Scholar 

  43. Pappas CL, Strick PL. Anatomical demonstration of multiple representation in the forelimb region of the cat motor cortex. J Comp Neurol. 1981;200:491–500.

    Article  CAS  PubMed  Google Scholar 

  44. Rouiller EM, Babalian A, Kazennikov O, Moret V, Yu XH, Wiesendanger M. Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Exp Brain Res. 1994;102:227–43.

    Article  CAS  PubMed  Google Scholar 

  45. Gould 3rd HJ, Cusick CG, Pons TP, Kaas JH. The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys. J Comp Neurol. 1986;247:297–325.

    Article  PubMed  Google Scholar 

  46. Huntley GW, Jones EG. Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: a correlative anatomic and physiological study. J Neurophysiol. 1991;66:390–413.

    CAS  PubMed  Google Scholar 

  47. Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD. Interhemispheric inhibition of the human motor cortex. J Physiol. 1992;453:525–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Di Lazzaro V, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, et al. Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Exp Brain Res. 1999;124:520–4.

    Article  PubMed  Google Scholar 

  49. Chen R, Yung D, Li JY. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol. 2003;89:1256–64.

    Article  PubMed  Google Scholar 

  50. Kukaswadia S, Wagle-Shukla A, Morgante F, Gunraj C, Chen R. Interactions between long latency afferent inhibition and interhemispheric inhibitions in the human motor cortex. J Physiol. 2005;563:915–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Lee H, Gunraj C, Chen R. The effects of inhibitory and facilitatory intracortical circuits on interhemispheric inhibition in the human motor cortex. J Physiol. 2007;580:1021–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Ni Z, Gunraj C, Nelson AJ, Yeh IJ, Castillo G, Hoque T, et al. Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human. Cereb Cortex. 2009;19:1654–65.

    Article  PubMed  Google Scholar 

  53. Irlbacher K, Brocke J, Mechow JV, Brandt SA. Effects of GABA(A) and GABA(B) agonists on interhemispheric inhibition in man. Clin Neurophysiol. 2007;118:308–16.

    Article  CAS  PubMed  Google Scholar 

  54. Rothwell JC, Colebatch J, Britton TC, Priori A, Thompson PD, Day BL, et al. Physiological studies in a patient with mirror movements and agenesis of the corpus callosum. J Physiol. 1991;438:34P.

    Google Scholar 

  55. Meyer B-U, Roricht S, von Grafin EH, Kruggel F, Weindl A. Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain. 1995;118:429–40.

    Article  PubMed  Google Scholar 

  56. Ridding MC, Rothwell JC. Is there a future for therapeutic use of transcranial magnetic stimulation? Nat Rev Neurosci. 2007;8:559–67.

    Article  CAS  PubMed  Google Scholar 

  57. Mansur CG, Fregni F, Boggio PS, Riberto M, Gallucci-Neto J, Santos CM, Wagner T, Rigonatti SP, Marcolin MA, Pascual-Leone A. A sham-stimulation controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology. 2005;641802–4.

    Google Scholar 

  58. Takeuchi N, Chuma T, Matsuo Y, Watanabe I, Ikoma K. Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke. 2005;36:2681–6.

    Article  PubMed  Google Scholar 

  59. Kim YH, You SH, Ko MH, Park JW, Lee KH, Jang SH, Yoo WK, Hallett M. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke. 2006;37:1471–6. Erratum in: Stroke. 2006;37:2861.

    Article  PubMed  Google Scholar 

  60. Khedr EM, Ahmed MA, Fathy N, Rothwell JC. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology. 2005;65:466–8.

    Article  PubMed  Google Scholar 

  61. Talelli P, Greenwood RJ, Rothwell JC. Exploring Theta Burst Stimulation as an intervention to improve motor recovery in chronic stroke. Clin Neurophysiol. 2007;118:333–42.

    Article  CAS  PubMed  Google Scholar 

  62. Lefaucheur JP, Drouot X, Keravel Y, Nguyen JP. Pain relief induced by repetitive transcranial magnetic stimulation of precentral cortex. Neuroreport. 2001;12:2963–5.

    Article  CAS  PubMed  Google Scholar 

  63. Huang YZ, Edwards MJ, Bhatia KP, Rothwell JC. One-Hz repetitive transcranial magnetic stimulation of the premotor cortex alters reciprocal inhibition in DYT1 dystonia. Mov Disord. 2004;19:54–9.

    Article  PubMed  Google Scholar 

  64. Koch G, Brusa L, Caltagirone C, Peppe A, Oliveri M, Stanzione P, Centonze D. rTMS of supplementary motor area modulates therapy-induced dyskinesias in Parkinson disease. Neurology. 2005;65(4):623–5.

    Article  CAS  PubMed  Google Scholar 

  65. George MS, Ketter TA, Post RM. Prefrontal cortex dysfunction in clinical depression. Depression. 1994;2:59–72.

    Article  Google Scholar 

  66. Couturier JL. Efficacy of rapid-rate repetitive transcranial magnetic stimulation in the treatment of depression: a systematic review and meta-analysis. J Psychiatry Neurosci. 2005;30:83–90.

    PubMed Central  PubMed  Google Scholar 

  67. Martin JL, Barbanoj MJ, Schlaepfer TE, Thompson E, Pérez V, Kulisevsky J. Repetitive transcranial magnetic stimulation for the treatment of depression. Systematic review and meta-analysis. Br J Psychiatry. 2003;182:480–91.

    Article  PubMed  Google Scholar 

  68. George MS, Wassermann EM, Williams WA, Callahan A, Ketter TA, Basser P, Hallett M, Post RM. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport. 1995;6:1853–6.

    Article  CAS  PubMed  Google Scholar 

  69. Pascual-Leone A, Rubio B, Pallardó F, Catalá MD. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet. 1996;348:233–7.

    Article  CAS  PubMed  Google Scholar 

  70. Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC. The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex. 2012;23(7):1593–605.

    Article  PubMed  Google Scholar 

  71. Maurits N. Spinal dysfunction, transcranial magnetic stimulation, and motor evoked potentials, Neurology to methodology and back. New York, NY: Springer; 2012.

    Google Scholar 

  72. Vanneste S, van der Loo E, Plazier M, De Ridder D. Parietal double-cone coil stimulation in tinnitus. Exp Brain Res. 2012;221:337–43.

    Article  PubMed  Google Scholar 

  73. Yedimenko JA, Perez MA. The effect of bilateral isometric forces in different directions on motor cortical function in humans. J Neurophysiol. 2010;104:2922–31.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica A. Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Caruso, A.P., Perez, M.A. (2015). Physiological Basis of Transcranial Magnetic Stimulation. In: Knotkova, H., Rasche, D. (eds) Textbook of Neuromodulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1408-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1408-1_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1407-4

  • Online ISBN: 978-1-4939-1408-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics