Skip to main content
Log in

Investigating human motor control by transcranial magnetic stimulation

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In this review we discuss the contribution of transcranial magnetic stimulation (TMS) to the understanding of human motor control. Compound motor-evoked potentials (MEPs) may provide valuable information about corticospinal transmission, especially in patients with neurological disorders, but generally do not allow conclusions regarding the details of corticospinal function to be made. Techniques such as poststimulus time histograms (PSTHs) of the discharge of single, voluntarily activated motor units and conditioning of H reflexes provide a more optimal way of evaluating transmission in specific excitatory and inhibitory pathways. Through application of such techniques, several important issues have been clarified. TMS has provided the first real evidence that direct monosynaptic connections from the motor cortex to spinal motoneurons exist in man, and it has been revealed that the distribution of these projections roughly follows the same proximal–distal gradient as in other primates. However, pronounced differences also exist. In particular, the tibialis anterior muscle appears to receive as significant a monosynaptic corticospinal drive as muscles in the hand. The reason for this may be the importance of this muscle in controlling the foot trajectory in the swing phase of walking. Conditioning of H reflexes by TMS has provided evidence of changes in cortical excitability prior to and during various movements. These experiments have generally confirmed information obtained from chronic recording of the activity of corticospinal cells in primates, but information about the corticospinal contribution to movements for which information from other primates is sparse or lacking has also been obtained. One example is walking, where TMS experiments have revealed that the corticospinal tract makes an important contribution to the ongoing EMG activity during treadmill walking. TMS experiments have also documented the convergence of descending corticospinal projections and peripheral afferents on spinal interneurons. Current investigations of the functional significance of this convergence also rely on TMS experiments. The general conclusion from this review is that TMS is a powerful technique in the analysis of motor control, but that care is necessary when interpreting the data. Combining TMS with other techniques such as PSTH and H reflex testing amplifies greatly the power of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A-C.
Fig. 2A-C.
Fig. 3A-C.
Fig. 4A-D.
Fig. 5A-C.
Fig. 6.
Fig. 7A, B.
Fig. 8.

Similar content being viewed by others

References

  • Aimonetti JM, Nielsen JB (2002) Cortical excitability and motor task in man: an investigation of the wrist extensor motor area. Exp Brain Res 143:431–439

    Article  PubMed  Google Scholar 

  • Awiszus F, Feistner H (1999) Recruitment order of single motor units of the anterior tibial muscle in man. In: Paulus W, Hallett M, Rossini PM, Rothwell JC (eds) Transcranial magnetic stimulation. EEG (Suppl) 51:102–112

  • Bailey CJ, Karhu J, Ilmoniemi RJ (2001) Transcranial magnetic stimulation as a tool for cognitive studies. Scand J Psychol 42:297–305

    Article  CAS  PubMed  Google Scholar 

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107

    CAS  PubMed  Google Scholar 

  • Bawa P, Chalmers GR, Stewart H, Eisen AA (2002) Responses of ankle extensor and flexor motoneurons to transcranial magnetic stimulation. J Neurophysiol 88:124–132

    CAS  PubMed  Google Scholar 

  • Bernhard CG, Bohm E (1954) Monosynaptic corticospinal activation of fore limb motoneurons in monkeys (Macaca mulatta). Acta Physiol Scand 31:104–112

    Google Scholar 

  • Brouwer B, Ashby P (1990) Corticospinal projections to upper and lower limb spinal motoneurons in man. Electroencephalogr Clin Neurophysiol 76:509–519

    Article  CAS  PubMed  Google Scholar 

  • Brouwer B, Ashby P (1992) Corticospinal projections to lower limb motoneurons in man. Exp Brain Res 89:649–654

    CAS  PubMed  Google Scholar 

  • Burke D, Gandevia SC, McKeon B (1984) Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex. J Neurophysiol 52:435–448

    CAS  PubMed  Google Scholar 

  • Burke D, Hicks R, Gandevia SC, Stephen J, Woodforth I, Crawford M (1993) Direct comparison of corticospinal volleys in human subjects to transcranial magnetic and electrical stimulation. J Physiol (Lond) 470:383–393

    Google Scholar 

  • Burke D, Gracies JM, Mazevet D, Meunier S, Pierrot-Deseilligny E (1994) Non-monosynaptic transmission of the cortical command for voluntary movement in man. J Physiol (Lond) 480:191–202

    Google Scholar 

  • Cantello R, Tarletti R, Civardi C (2002) Transcranial magnetic stimulation and Parkinson's disease. Brain Res Brain Res Rev 38:309–327

    Article  PubMed  Google Scholar 

  • Capaday C, Forget R, Fraser R, Lamarre Y (1991) Evidence for a contribution of the motor cortex to the long-latency stretch reflex of the human thumb. J Physiol (Lond) 440:243–255

    Google Scholar 

  • Capaday C, Lavoie BA, Barbeau H, Schneider C, Bonnard M (1999) Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J Neurophysiol 81:129–139

    CAS  PubMed  Google Scholar 

  • Cheney PD, Fetz EE (1980) Functional classes of primate corticomotoneuronal cells and their relation to active force. J Neurophysiol 44:773–791

    CAS  PubMed  Google Scholar 

  • Cheney PD, Fetz EE (1984) Corticomotoneuronal cells contribute to long-latency stretch reflexes in the rhesus monkey. J Physiol (Lond) 349:249–272

    Google Scholar 

  • Cheney PD, Fetz EE, Palmer SS (1985) Patterns of facilitation and suppression of antagonist forelimb muscles from motor cortex sites in the awake monkey. J Neurophysiol 53:805–820

    CAS  PubMed  Google Scholar 

  • Chofflon M, Lachat JM, Ruegg DG (1982) A transcortical loop demonstrated by stimulation of low-threshold muscle afferents in the awake monkey. J Physiol (Lond) 323:393–402

    Google Scholar 

  • Christensen LO, Morita H, Petersen N, Nielsen J (1999) Evidence suggesting that a transcortical reflex pathway contributes to cutaneous reflexes in the tibialis anterior muscle during walking in man. Exp Brain Res 124:59–68

    CAS  PubMed  Google Scholar 

  • Cowey A, Walsh V (2001) Tickling the brain: studying visual sensation, perception and cognition by transcranial magnetic stimulation. Prog Brain Res 134:411–425

    CAS  PubMed  Google Scholar 

  • Crone C, Nielsen J (1989) Spinal mechanisms in man contributing to reciprocal inhibition during voluntary dorsiflexion of the foot. J Physiol (Lond) 416:255–272

    Google Scholar 

  • Crone C, Hultborn H, Jespersen B, Nielsen J (1987) Reciprocal Ia inhibition between ankle flexors and extensors in man. J Physiol (Lond) 389:163–185

    Google Scholar 

  • Datta AK, Harrison LM, Stephens JA (1989) Task-dependent changes in the size of response to magnetic brain stimulation in human first dorsal interosseous muscle. J Physiol (Lond) 418:13–23

    Google Scholar 

  • Davey NJ, Romaiguere P, Maskill DW, Ellaway PH (1994) Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man. J Physiol (Lond) 477(2):223–235

    Google Scholar 

  • Day BL, Riescher H, Struppler A, Rothwell J C, Marsden CD (1991) Changes in the response to magnetic and electrical stimulation of the motor cortex following muscle stretch in man. J Physiol (Lond) 433:41–57

    Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, Insola A, Mazzone P, Tonali P, Rothwell JC (1998a) Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr Clin Neurophysiol 109:397–401

    PubMed  Google Scholar 

  • Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998b) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol (Lond) 508(2):625–633

    Google Scholar 

  • Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998c) Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119:265–268

    PubMed  Google Scholar 

  • Di Lazzaro, V, Oliviero A, Saturno E, Pilato F, Insola A, Mazzone P, Profice P, Tonali P, Rothwell JC (2001) The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. Exp Brain Res 138:268–273

    PubMed  Google Scholar 

  • Drew T (1991) Visuomotor coordination in locomotion. Curr Opin Neurobiol 1:652–657

    Google Scholar 

  • Edgley SA, Jankowska E, Shefchyk S (1988) Evidence that mid-lumbar neurons in reflex pathways from group II afferents are involved in locomotion in the cat. J Physiol (Lond) 403:57–71

    Google Scholar 

  • Edgley SA, Eyre JA, Lemon RN, Miller S (1990) Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey. J Physiol (Lond) 425:301–320

    Google Scholar 

  • Evans, AL, Harrison LM, Stephens JA (1989) Task-dependent changes in cutaneous reflexes recorded from various muscles controlling finger movement in man. J Physiol (Lond) 418:1–12

    Google Scholar 

  • Evarts EV (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31:14–27

    CAS  PubMed  Google Scholar 

  • Fellows SJ, Topper R, Schwarz M, Thilmann AF, Noth J (1996) Stretch reflexes of the proximal arm in a patient with mirror movements: absence of bilateral long-latency components. Electroencephalogr Clin Neurophysiol 101:79–83

    Article  CAS  PubMed  Google Scholar 

  • Fetz EE, Cheney PD (1987) Functional relations between primate motor cortex cells and muscles: fixed and flexible. Ciba Found Symp 132:98–117

    CAS  PubMed  Google Scholar 

  • Fetz EE, Cheney PD, Mewes K, Palmer S (1989) Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells. Prog Brain Res 80:437–449

    CAS  PubMed  Google Scholar 

  • Fetz EE, Perlmutter SI, Prut Y, Seki K (2002) Functional properties of primate spinal interneurons during voluntary hand movements. Adv Exp Med Biol 508:265–271

    PubMed  Google Scholar 

  • Flament D, Goldsmith P, Buckley CJ, Lemon RN (1993) Task dependence of responses in first dorsal interosseous muscle to magnetic brain stimulation in man. J Physiol (Lond) 464:361–378

    Google Scholar 

  • Gandevia SC, Petersen N, Butler JE, Taylor JL (1999) Impaired response of human motoneurons to corticospinal stimulation after voluntary exercise. J Physiol (Lond) 521 Pt 3:749–759

    Google Scholar 

  • George MS, Wassermann EM, Post RM (1996) Transcranial magnetic stimulation: a neuropsychiatric tool for the 21st century. J Neuropsychiatry Clin Neurosci 8:373–382

    CAS  PubMed  Google Scholar 

  • Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406:147–150

    Google Scholar 

  • Houlden DA, Schwartz ML, Tator CH, Ashby P, MacKay WA (1999) Spinal cord-evoked potentials and muscle responses evoked by transcranial magnetic stimulation in 10 awake human subjects. J Neurosci 19:1855–1862

    CAS  PubMed  Google Scholar 

  • Hultborn H, Nielsen JB (1995) H-reflexes and F-responses are not equally sensitive to changes in motoneuronal excitability. Muscle Nerve 18(12):1471–1474

    CAS  PubMed  Google Scholar 

  • Iles JF, Pisini JV (1992) Cortical modulation of transmission in spinal reflex pathways of man. J Physiol (Lond) 455:425–446

    Google Scholar 

  • Illert M, Lundberg A, Tanaka R (1977) Integration in descending motor pathways controlling the forelimb in the cat. 3. Convergence on propriospinal neurons transmitting disynaptic excitation from the corticospinal tract and other descending tracts. Exp Brain Res 29:323–346

    CAS  PubMed  Google Scholar 

  • Jankowska E, Padel Y, Tanaka R (1976) Disynaptic inhibition of spinal motoneurons from the motor cortex in the monkey. J Physiol (Lond) 258:467–487

    Google Scholar 

  • Kirkwood PA, Maier MA, Lemon RN (2002) Interspecies comparisons for the C3-4 propriospinal system: unresolved issues. Adv Exp Med Biol 508:299–308

    PubMed  Google Scholar 

  • Kuypers HGJM (1981) Anatomy of the descending pathways. In: Brookhart JM, Mountcastle VB (eds) Motor control. (Handbook of physiology, Sect I, The nervous system, vol II) American Physiological Society, Bethesda, pp 597–666

  • Landgren S, Phillips CG, Porter R (1962) Minimal synaptic actions of pyramidal impulses on some alpha motoneurons of the baboons hand and forearm. J Physiol (Lond) 161:91–111

    Google Scholar 

  • Lawrence DG, Kuypers HG (1968) The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain 91:15–36

    CAS  PubMed  Google Scholar 

  • Lemon RN (1981) Functional properties of monkey motor cortex neurons receiving afferent input from the hand and fingers. J Physiol (Lond) 311:497–519

    Google Scholar 

  • Lisanby SH, Luber B, Perera T, Sackeim HA (2000) Transcranial magnetic stimulation: applications in basic neuroscience and neuropsychopharmacology. Int J Neuropsychopharmacol 3:259–273

    Article  PubMed  Google Scholar 

  • Lundberg A (1970) The excitatory control of the Ia inhibitory pathway. In: Andersen P, Jansen JKS (eds) Excitatory synaptic mechanisms. Universitetsforlaget, Oslo, pp 333–340

  • Macefield VG, Rothwell JC, Day BL (1996) The contribution of transcortical pathways to long-latency stretch and tactile reflexes in human hand muscles. Exp Brain Res 108:147–154

    CAS  PubMed  Google Scholar 

  • Marchand-Pauvert V, Simonetta-Moreau M, Pierrot-Deseilligny E (1999) Cortical control of spinal pathways mediating group II excitation to human thigh motoneurons. J Physiol (Lond) 517(1):301–313

    Google Scholar 

  • Marsden CD, Rothwell JC, Day BL (1983) Long-latency automatic responses to muscle stretch in man: origin and function. Adv Neurol 39:509–539

    CAS  PubMed  Google Scholar 

  • Martin JL,Barbanoj MJ, Schlaepfer TE, Clos S, Perez V, Kulisevsky J, Gironell A (2002) Transcranial magnetic stimulation for treating depression. Cochrane Database Syst Rev CD003493

  • Matthews PB, Farmer SF, Ingram DA (1990) On the localization of the stretch reflex of intrinsic hand muscles in a patient with mirror movements. J Physiol (Lond) 428:561–577

    Google Scholar 

  • Mazzocchio R, Rossi A, Rothwell JC (1994) Depression of Renshaw recurrent inhibition by activation of corticospinal fibers in human upper and lower limb. J Physiol (Lond) 481(2):487–498

    Google Scholar 

  • McNamara B, Ray JL, Arthurs OJ, Boniface S (2001) Transcranial magnetic stimulation for depression and other psychiatric disorders. Psychol Med 31:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Meunier S, Morin C (1989) Changes in presynaptic inhibition of Ia fibers to soleus motoneurons during voluntary dorsiflexion of the foot. Exp Brain Res 76:510–518

    CAS  PubMed  Google Scholar 

  • Meunier S, Pierrot-Deseilligny E (1998) Cortical control of presynaptic inhibition of Ia afferents in humans. Exp Brain Res 119:415–426

    CAS  PubMed  Google Scholar 

  • Miller AD, Brooks VB (1981) Late muscular responses to arm perturbations persist during supraspinal dysfunctions in monkeys. Exp Brain Res 41:146–158

    CAS  PubMed  Google Scholar 

  • Mills KR (1991) Magnetic brain stimulation: a tool to explore the action of the motor cortex on single human spinal motoneurons. Trends Neurosci 14:401–405

    Article  CAS  PubMed  Google Scholar 

  • Morita H, Petersen N, Christensen LO, Sinkjaer T, Nielsen J (1998) Sensitivity of H-reflexes and stretch reflexes to presynaptic inhibition in humans. J Neurophysiol 80:610–620

    CAS  PubMed  Google Scholar 

  • Morita H, Baumgarten J, Petersen N, Christensen LO, Nielsen J (1999) Recruitment of extensor-carpi-radialis motor units by transcranial magnetic stimulation and radial-nerve stimulation in human subjects. Exp Brain Res 128(4):557–562

    Article  CAS  PubMed  Google Scholar 

  • Morita H, Olivier E, Baumgarten J, Petersen NT, Christensen LO, Nielsen JB (2000) Differential changes in corticospinal and Ia input to tibialis anterior and soleus motor neurones during voluntary contraction in man. Acta Physiol Scand 170(1):65–76

    Article  CAS  PubMed  Google Scholar 

  • Muir RB, Lemon RN (1983) Corticospinal neurons with a special role in precision grip. Brain Res 261:312–316

    CAS  PubMed  Google Scholar 

  • Nicolas G, Marchand-Pauvert V, Burke D, Pierrot-Deseilligny E (2001) Corticospinal excitation of presumed cervical propriospinal neurons and its reversal to inhibition in humans. J Physiol (Lond) 533:903–919

    Google Scholar 

  • Nielsen J, Kagamihara Y (1992) The regulation of disynaptic reciprocal Ia inhibition during cocontraction of antagonistic muscles in man. J Physiol (Lond) 456:373–391

    Google Scholar 

  • Nielsen J, Kagamihara Y (1993) The regulation of presynaptic inhibition during cocontraction of antagonistic muscles in man. J Physiol (Lond) 464:575–593

    Google Scholar 

  • Nielsen J, Petersen N (1995) Changes in the effect of magnetic brain stimulation accompanying voluntary dynamic contraction in man. J Physiol (Lond) 484 ( Pt 3):777–789

    Google Scholar 

  • Nielsen J, Pierrot-Deseilligny E (1991) Pattern of cutaneous inhibition of the propriospinal-like excitation to human upper limb motoneurons. J Physiol (Lond) 434:169–182

    Google Scholar 

  • Nielsen J, Petersen N, Deuschl G, Ballegaard M (1993) Task-related changes in the effect of magnetic brain stimulation on spinal neurons in man. J Physiol (Lond) 471:223–243

    Google Scholar 

  • Nielsen J, Petersen N, Ballegaard M (1995) Latency of effects evoked by electrical and magnetic brain stimulation in lower limb motoneurons in man. J Physiol (Lond) 484(3):791–802

    Google Scholar 

  • Nielsen J, Petersen N, Fedirchuk B (1997) Evidence suggesting a transcortical pathway from cutaneous foot afferents to tibialis anterior motoneurons in man. J Physiol (Lond) 501(2):473–484

    Google Scholar 

  • Palmer E, Ashby P (1992) Corticospinal projections to upper limb motoneurons in humans. J Physiol (Lond) 448:397–412

    Google Scholar 

  • Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience--virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237

    CAS  PubMed  Google Scholar 

  • Petersen N, Christensen LO, Morita H, Sinkjaer T, Nielsen J (1998a) Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man. J Physiol (Lond) 512(1):267–276

    Google Scholar 

  • Petersen N, Christensen LO, Nielsen J (1998b) The effect of transcranial magnetic stimulation on the soleus H reflex during human walking. J Physiol (Lond) 513(2):599–610

    Google Scholar 

  • Petersen NT, Butler JE, Marchand-Pauvert V, Fisher R, Ledebt A, Pyndt HS, Hansen NL, Nielsen JB (2001) Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. J Physiol (Lond) 537:651–656

    Google Scholar 

  • Petersen NT, Taylor JL, Gandevia SC (2002) The effect of electrical stimulation of the corticospinal tract on motor units of human biceps brachii. J Physiol (Lond) 544:277–284

    Google Scholar 

  • Phillips CG (1969) Motor apparatus of the baboon's hand. The Ferrier lecture, 1968. Proc R Soc Lond B Biol Sci 173(31):141–174

    CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny E (1996) Transmission of the cortical command for human voluntary movement through cervical propriospinal premotoneurons. Prog Neurobiol 48:489–517

    CAS  PubMed  Google Scholar 

  • Pierrot-Deseilligny E, Marchand-Pauvert V (2002) A cervical propriospinal system in man. Adv Exp Med Biol 508:273–279

    PubMed  Google Scholar 

  • Pijnappels M, Van Wezel BM, Colombo G, Dietz V, Duysens J (1998) Cortical facilitation of cutaneous reflexes in leg muscles during human gait. Brain Res 787:149–153

    Article  CAS  PubMed  Google Scholar 

  • Porter R, Lemon R (1993) Corticospinal function and voluntary movement. Clarendon, Oxford

  • Priori A, Bertolasi L, Dressler D, Rothwell JC, Day BL, Thompson PD, Marsden CD (1993) Transcranial electric and magnetic stimulation of the leg area of the human motor cortex: single motor unit and surface EMG responses in the tibialis anterior muscle. Electroencephalogr Clin Neurophysiol 89:131–137

    Article  CAS  PubMed  Google Scholar 

  • Rothwell J, Burke D, Hicks R, Stephen J, Woodforth I, Crawford M (1994) Transcranial electrical stimulation of the motor cortex in man: further evidence for the site of activation. J Physiol (Lond) 481:243–250

    Google Scholar 

  • Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76:159–200

    CAS  PubMed  Google Scholar 

  • Schieppati M, Trompetto C, Abbruzzese G (1996) Selective facilitation of responses to cortical stimulation of proximal and distal arm muscles by precision tasks in man. J Physiol (Lond) 491:551–562

    Google Scholar 

  • Schoen JHR (1964) Comparative aspects of the descending fiber system in the spinal cord. Prog Brain Res 11:203–222

    CAS  Google Scholar 

  • Schubert, M, Curt A, Jensen L, Dietz V (1997) Corticospinal input in human gait: modulation of magnetically evoked motor responses. Exp Brain Res 115:234–246

    CAS  PubMed  Google Scholar 

  • Schubert M, Curt A, Colombo G, Berger W, Dietz V (1999) Voluntary control of human gait: conditioning of magnetically evoked motor responses in a precision stepping task. Exp Brain Res 126:583–588

    Article  CAS  PubMed  Google Scholar 

  • Siebner HR, Rothwell J (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16

    Article  PubMed  Google Scholar 

  • Simonetta-Moreau M, Marque P, Marchand-Pauvert V, Pierrot-Deseilligny E (1999) The pattern of excitation of human lower limb motoneurons by probable group II muscle afferents. J Physiol (Lond) 517(1):287–300

    Google Scholar 

  • Sinkjaer T, Andersen JB, Ladouceur M, Christensen LO, Nielsen JB (2000) Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J Physiol (Lond) 523:817–827

    Google Scholar 

  • Tatton WG, Forner SD, Gerstein GL, Chambers WW, Liu CN (1975) The effect of postcentral cortical lesions on motor responses to sudden upper limb displacements in monkeys. Brain Res 96:108–113

    Article  CAS  PubMed  Google Scholar 

  • Taylor JL, Fogel W, Day BL, Rothwell JC (1995) Ipsilateral cortical stimulation inhibited the long-latency response to stretch in the long finger flexors in humans. J Physiol (Lond) 488(3):821–831

    Google Scholar 

  • Thilmann AF, Schwarz M, Topper R, Fellows SJ, Noth J (1991) Different mechanisms underlie the long-latency stretch reflex response of active human muscle at different joints. J Physiol (Lond) 444:631–643

    Google Scholar 

  • Tracey DJ, Walmsley B, Brinkman J (1980) 'Long-loop' reflexes can be obtained in spinal monkeys. Neurosci Lett 18:59–65

    Article  CAS  PubMed  Google Scholar 

  • Ugawa Y, Day BL, Rothwell JC, Thompson PD, Merton PA, Marsden CD (1991) Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J Physiol (Lond) 441:57–72

    Google Scholar 

  • Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1:73–79

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Eisen AA (2002) Magnetic stimulation of the central and peripheral nervous systems. Muscle Nerve 25:160–175

    Article  PubMed  Google Scholar 

  • Wiesendanger M (1969) The pyramidal tract: recent investigations on its morphology and function. Ergeb Physiol 61:72–136

    CAS  PubMed  Google Scholar 

  • Winter DA, Bishop PJ (1992) Lower extremity injury. Biomechanical factors associated with chronic injury to the lower extremity. Sports Med 14:149–156

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas T. Petersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, N.T., Pyndt, H.S. & Nielsen, J.B. Investigating human motor control by transcranial magnetic stimulation. Exp Brain Res 152, 1–16 (2003). https://doi.org/10.1007/s00221-003-1537-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1537-y

Keywords

Navigation