Skip to main content

Fluorescence Staining of Mitochondria for Morphology Analysis in Saccharomyces cerevisiae

  • Protocol
  • First Online:
Yeast Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1163))

Abstract

Mitochondria are highly dynamic organelles in all eukaryotic cells. Most of our insights regarding the mechanisms that determine the morphogenesis and motility of mitochondria have been identified and analyzed first in the model organism Saccharomyces cerevisiae. To this end high-resolution microscopic methods were applied that rely on fluorescence labeling of the organelle. A comprehensive overview of fluorescence staining approaches that were successfully applied to study the behavior of mitochondria in vivo but also in fixed cells is provided. Slightly modified versions of the methods described here can also be used to analyze other compartments of the yeast cell. Microscopic setups and imaging methods will only be shortly discussed since these are highly dependent on each laboratory’s basic infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bereiter-Hahn J (1990) Behavior of mitochondria in the living cell. Int Rev Cytol 122:1–63

    Article  CAS  PubMed  Google Scholar 

  2. Bereiter-Hahn J, Voth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27:198–219

    CAS  PubMed  Google Scholar 

  3. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  CAS  PubMed  Google Scholar 

  4. Shimomura O (2005) The discovery of aequorin and green fluorescent protein. J Microsc 217:1–15

    Article  CAS  PubMed  Google Scholar 

  5. Matz MV, Fradkov AF, Labas YA et al (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17: 969–973

    Article  CAS  PubMed  Google Scholar 

  6. Davidson MW, Campbell RE (2009) Engineered fluorescent proteins: innovations and applications. Nat Methods 6:713–717

    Article  CAS  PubMed  Google Scholar 

  7. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  PubMed  Google Scholar 

  8. Dimmer KS, Jakobs S, Vogel F et al (2005) Mdm31 and Mdm32 are inner membrane proteins required for maintenance of mitochondrial shape and stability of mitochondrial DNA nucleoids in yeast. J Cell Biol 168: 103–115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Burri L, Strahm Y, Hawkins CJ et al (2005) Mature DIABLO/Smac is produced by the IMP protease complex on the mitochondrial inner membrane. Mol Biol Cell 16:2926–2933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Westermann B, Neupert W (2000) Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16:1421–1427

    Article  CAS  PubMed  Google Scholar 

  11. Kondo-Okamoto N, Ohkuni K, Kitagawa K et al (2006) The novel F-box protein Mfb1p regulates mitochondrial connectivity and exhibits asymmetric localization in yeast. Mol Biol Cell 17:3756–3767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Mozdy AD, McCaffery JM, Shaw JM (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 151:367–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Schuldiner M, Metz J, Schmid V et al (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134:634–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kemper C, Habib SJ, Engl G et al (2008) Integration of tail-anchored proteins into the mitochondrial outer membrane does not require any known import components. J Cell Sci 121:1990–1998

    Article  CAS  PubMed  Google Scholar 

  15. Fehrenbacher KL, Yang HC, Gay AC et al (2004) Live cell imaging of mitochondrial movement along actin cables in budding yeast. Curr Biol 14:1996–2004

    Article  CAS  PubMed  Google Scholar 

  16. Okamoto K, Perlman PS, Butow RA (1998) The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J Cell Biol 142:613–623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Nunnari J, Wong ED, Meeusen S et al (2002) Studying the behavior of mitochondria. Methods Enzymol 351:381–393

    Article  CAS  PubMed  Google Scholar 

  18. Wach A, Brachat A, Alberti-Segui C et al (1997) Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:1065–1075

    Article  CAS  PubMed  Google Scholar 

  19. Janke C, Magiera MM, Rathfelder N et al (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962

    Article  CAS  PubMed  Google Scholar 

  20. Longtine MS, McKenzie A 3rd, Demarini DJ et al (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961

    Article  CAS  PubMed  Google Scholar 

  21. Gauss R, Trautwein M, Sommer T et al (2005) New modules for the repeated internal and N-terminal epitope tagging of genes in Saccharomyces cerevisiae. Yeast 22:1–12

    Article  CAS  PubMed  Google Scholar 

  22. Gueldener U, Heinisch J, Koehler GJ et al (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Huh WK, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  PubMed  Google Scholar 

  24. Howson R, Huh WK, Ghaemmaghami S et al (2005) Construction, verification and experimental use of two epitope-tagged collections of budding yeast strains. Comp Funct Genomics 6:2–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. McConnell SJ, Stewart LC, Talin A et al (1990) Temperature-sensitive yeast mutants defective in mitochondrial inheritance. J Cell Biol 111:967–976

    Article  CAS  PubMed  Google Scholar 

  26. Young IT (1989) Image fidelity: characterizing the imaging transfer function. Methods Cell Biol 30:1–45

    Article  CAS  PubMed  Google Scholar 

  27. Sibarita JB (2005) Deconvolution microscopy. Adv Biochem Eng Biotechnol 95:201–243

    PubMed  Google Scholar 

  28. Graf R, Rietdorf J, Zimmermann T (2005) Live cell spinning disk microscopy. Adv Biochem Eng Biotechnol 95:57–75

    PubMed  Google Scholar 

  29. Egner A, Jakobsm S, Hell SW (2002) Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci U S A 99:3370–3375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  PubMed  Google Scholar 

  31. Schmidt R, Wurm CA, Punge A et al (2009) Mitochondrial cristae revealed with focused light. Nano Lett 9:2508–2510

    Article  CAS  PubMed  Google Scholar 

  32. Swayne TC, Gay AC, Pon LA (2007) Fluorescence imaging of mitochondria in yeast. Methods Mol Biol 372:433–459

    Article  CAS  PubMed  Google Scholar 

  33. Gietz RD, Schiestl RH, Willems AR et al (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  CAS  PubMed  Google Scholar 

  34. Dimmer KS, Fritz S, Fuchs F et al (2002) Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell 13:847–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Doron Rapaport for his continuous support and for valuable suggestions to the manuscript. Furthermore I thank Tao Tan for his contributions to the fluorescence microscopy images. Work in the laboratory was supported by the fortüne program of the medical faculty of the University of Tübingen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Stefan Dimmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dimmer, K.S. (2014). Fluorescence Staining of Mitochondria for Morphology Analysis in Saccharomyces cerevisiae . In: Xiao, W. (eds) Yeast Protocols. Methods in Molecular Biology, vol 1163. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0799-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0799-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0798-4

  • Online ISBN: 978-1-4939-0799-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics