Skip to main content

Live-Cell Imaging of Mitochondria and the Actin Cytoskeleton in Budding Yeast

  • Protocol
Cytoskeleton Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1365))

Abstract

Maintenance and regulation of proper mitochondrial dynamics and functions are necessary for cellular homeostasis. Numerous diseases, including neurodegeneration and muscle myopathies, and overall cellular aging are marked by declining mitochondrial function and subsequent loss of multiple other cellular functions. For these reasons, optimized protocols are needed for visualization and quantification of mitochondria and their function and fitness. In budding yeast, mitochondria are intimately associated with the actin cytoskeleton and utilize actin for their movement and inheritance. This chapter describes optimal approaches for labeling mitochondria and the actin cytoskeleton in living budding yeast cells, for imaging the labeled cells, and for analyzing the resulting images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bubnell J, Pfister P, Sapar ML, Rogers ME, Feinstein P (2013) beta2 adrenergic receptor fluorescent protein fusions traffic to the plasma membrane and retain functionality. PLoS ONE 8: e74941.

    Google Scholar 

  2. Gauss R, Trautwein M, Sommer T, Spang A (2005) New modules for the repeated internal and N-terminal epitope tagging of genes in Saccharomyces cerevisiae. Yeast 22:1–12

    Article  CAS  PubMed  Google Scholar 

  3. Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    Article  CAS  PubMed  Google Scholar 

  5. Simbeni R, Pon L, Zinser E, Paltauf F, Daum G (1991) Mitochondrial membrane contact sites of yeast. Characterization of lipid components and possible involvement in intramitochondrial translocation of phospholipids. J Biol Chem 266:10047–10049

    CAS  PubMed  Google Scholar 

  6. Meeusen S, Nunnari J (2003) Evidence for a two membrane-spanning autonomous mitochondrial DNA replisome. J Cell Biol 163:503–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Koehler CM (2004) New developments in mitochondrial assembly. Annu Rev Cell Dev Biol 20:309–335

    Article  CAS  PubMed  Google Scholar 

  8. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    Article  CAS  PubMed  Google Scholar 

  9. Higuchi-Sanabria R, Pernice WM, Vevea JD, Alessi Wolken DM, Boldogh IR, Pon LA (2014) Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae. FEMS Yeast Research 14(8):1133–46

    Google Scholar 

  10. Vevea JD, Swayne TC, Boldogh IR, Pon LA (2014) Inheritance of the fittest mitochondria in yeast. Trends Cell Biol 24:53–60

    Article  CAS  PubMed  Google Scholar 

  11. Swayne TC, Zhou C, Boldogh IR et al (2011) Role for cER and Mmr1p in anchorage of mitochondria at sites of polarized surface growth in budding yeast. Curr Biol 21:1994–1999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lackner LL, Ping H, Graef M, Murley A, Nunnari J (2013) Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria. Proc Natl Acad Sci U S A 110:E458–E467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Klecker T, Scholz D, Fortsch J, Westermann B (2013) The yeast cell cortical protein Num1 integrates mitochondrial dynamics into cellular architecture. J Cell Sci 126:2924–2930

    Article  CAS  PubMed  Google Scholar 

  14. Hughes AL, Gottschling DE (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492:261–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Vevea JD, Wolken DM, Swayne TC, White AB, Pon LA (2013) Ratiometric biosensors that measure mitochondrial redox state and ATP in living yeast cells. J Vis Exp (77), e50633, doi:10.3791/50633

  16. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279:13044–13053

    Article  CAS  PubMed  Google Scholar 

  17. McFaline-Figueroa JR, Vevea J, Swayne TC, Zhou C, Liu C, Leung G, Boldogh IR, Pon LA (2011) Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell 10:885–895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Yang HC, Pon LA (2002) Actin cable dynamics in budding yeast. Proc Natl Acad Sci U S A 99:751–756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Higuchi R, Vevea JD, Swayne TC, Chojnowski R, Hill V, Boldogh IR, Pon LA (2013) Actin dynamics affect mitochondrial quality control and aging in budding yeast. Curr Biol 23:2417–2422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Doyle T, Botstein D (1996) Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc Natl Acad Sci U S A 93:3886–3891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Huckaba TM, Lipkin T, Pon LA (2006) Roles of type II myosin and a tropomyosin isoform in retrograde actin flow in budding yeast. J Cell Biol 175:957–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Fehrenbacher KL, Yang HC, Gay AC, Huckaba TM, Pon LA (2004) Live cell imaging of mitochondrial movement along actin cables in budding yeast. Curr Biol 14:1996–2004

    Article  CAS  PubMed  Google Scholar 

  23. Riedl J, Crevenna AH, Kessenbrock K et al (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sabourin M, Tuzon CT, Fisher TS, Zakian VA (2007) A flexible protein linker improves the function of epitope-tagged proteins in Saccharomyces cerevisiae. Yeast 24:39–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cheng TH, Chang CR, Joy P, Yablok S, Gartenberg MR (2000) Controlling gene expression in yeast by inducible site-specific recombination. Nucleic Acids Res 28:E108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Messerschmitt M, Jakobs S, Vogel F, Fritz S, Dimmer KS, Neupert W, Westermann B (2003) The inner membrane protein Mdm33 controls mitochondrial morphology in yeast. J Cell Biol 160:553–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Pawley J (2000) The 39 steps: a cautionary tale of quantitative 3-D fluorescence microscopy. Biotechniques 28(884–886):888

    Google Scholar 

  28. Wallace W, Schaefer LH, Swedlow JR (2001) A workingperson’s guide to deconvolution in light microscopy. Biotechniques 31:1076–1078, 1080, 1082 passim

    Google Scholar 

  29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  30. De Vos KJ, Sheetz MP (2007) Visualization and quantification of mitochondrial dynamics in living animal cells. Methods Cell Biol 80:627–682

    Article  PubMed  Google Scholar 

  31. Thevenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7:27–41

    Article  CAS  PubMed  Google Scholar 

  32. Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961

    Article  CAS  PubMed  Google Scholar 

  33. Rodrigues F, van Hemert M, Steensma HY, Corte-Real M, Leao C (2001) Red fluorescent protein (DsRed) as a reporter in Saccharomyces cerevisiae. J Bacteriol 183:3791–3794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Janke C, Magiera MM, Rathfelder N et al (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962

    Article  CAS  PubMed  Google Scholar 

  35. Sheff MA, Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661–670

    Article  CAS  PubMed  Google Scholar 

  36. Young CL, Raden DL, Caplan JL, Czymmek KJ, Robinson AS (2012) Cassette series designed for live-cell imaging of proteins and high-resolution techniques in yeast. Yeast 29:119–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Okamoto K, Perlman PS, Butow RA (1998) The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J Cell Biol 142:613–623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Mozdy AD, McCaffery JM, Shaw JM (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 151:367–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Riezman H, Hase T, van Loon AP, Grivell LA, Suda K, Schatz G (1983) Import of proteins into mitochondria: a 70 kilodalton outer membrane protein with a large carboxy-terminal deletion is still transported to the outer membrane. EMBO J 2:2161–2168

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Madania A, Dumoulin P, Grava S, Kitamoto H, Scharer-Brodbeck C, Soulard A, Moreau V, Winsor B (1999) The Saccharomyces cerevisiae homologue of human Wiskott-Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol Biol Cell 10:3521–3538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kaksonen M, Sun Y, Drubin DG (2003) A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115:475–487

    Article  CAS  PubMed  Google Scholar 

  42. Warren DT, Andrews PD, Gourlay CW, Ayscough KR (2002) Sla1p couples the yeast endocytic machinery to proteins regulating actin dynamics. J Cell Sci 115:1703–1715

    CAS  PubMed  Google Scholar 

  43. Miliaras NB, Park JH, Wendland B (2004) The function of the endocytic scaffold protein Pan1p depends on multiple domains. Traffic 5:963–978

    Article  CAS  PubMed  Google Scholar 

  44. Morishita M, Engebrecht J (2005) End3p-mediated endocytosis is required for spore wall formation in Saccharomyces cerevisiae. Genetics 170:1561–1574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Sun Y, Carroll S, Kaksonen M, Toshima JY, Drubin DG (2007) PtdIns(4,5)P2 turnover is required for multiple stages during clathrin- and actin-dependent endocytic internalization. J Cell Biol 177:355–367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Sun Y, Martin AC, Drubin DG (2006) Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev Cell 11:33–46

    Article  CAS  PubMed  Google Scholar 

  47. Vaduva G, Martin NC, Hopper AK (1997) Actin-binding verprolin is a polarity development protein required for the morphogenesis and function of the yeast actin cytoskeleton. J Cell Biol 139:1821–1833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Evangelista M, Klebl BM, Tong AH, Webb BA, Leeuw T, Leberer E, Whiteway M, Thomas DY, Boone C (2000) A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. J Cell Biol 148:353–362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Jonsdottir GA, Li R (2004) Dynamics of yeast Myosin I: evidence for a possible role in scission of endocytic vesicles. Curr Biol 14:1604–1609

    Article  CAS  PubMed  Google Scholar 

  50. Sekiya-Kawasaki M, Groen AC, Cope MJ et al (2003) Dynamic phosphoregulation of the cortical actin cytoskeleton and endocytic machinery revealed by real-time chemical genetic analysis. J Cell Biol 162:765–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Huckaba TM, Gay AC, Pantalena LF, Yang HC, Pon LA (2004) Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 167:519–530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Boldogh IR, Yang HC, Nowakowski WD, Karmon SL, Hays LG, Yates JR 3rd, Pon LA (2001) Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. Proc Natl Acad Sci U S A 98:3162–3167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Smith MG, Swamy SR, Pon LA (2001) The life cycle of actin patches in mating yeast. J Cell Sci 114:1505–1513

    CAS  PubMed  Google Scholar 

  54. Karpova TS, Reck-Peterson SL, Elkind NB, Mooseker MS, Novick PJ, Cooper JA (2000) Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae. Mol Biol Cell 11:1727–1737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Waddle JA, Karpova TS, Waterston RH, Cooper JA (1996) Movement of cortical actin patches in yeast. J Cell Biol 132:861–870

    Article  CAS  PubMed  Google Scholar 

  56. Winder SJ, Jess T, Ayscough KR (2003) SCP1 encodes an actin-bundling protein in yeast. Biochem J 375:287–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Okreglak V, Drubin DG (2007) Cofilin recruitment and function during actin-mediated endocytosis dictated by actin nucleotide state. J Cell Biol 178:1251–1264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. McConnell SJ, Stewart LC, Talin A, Yaffe MP (1990) Temperature-sensitive yeast mutants defective in mitochondrial inheritance. J Cell Biol 111:967–976

    Article  CAS  PubMed  Google Scholar 

  59. Skowronek P, Krummeck G, Haferkamp O, Rodel G (1990) Flow cytometry as a tool to discriminate respiratory-competent and respiratory-deficient yeast cells. Curr Genet 18:265–267

    Article  CAS  PubMed  Google Scholar 

  60. Nunnari J, Marshall WF, Straight A, Murray A, Sedat JW, Walter P (1997) Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell 8:1233–1242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by awards from the Ellison Medical Foundation (AG-SS-2465) and the NIH (GM45735, GM45735S1, and GM096445) to L.A.P. GM45735S1 was issued from the NIH under the American Recovery and Reinvestment Act of 2009. The microscopes used for these studies were supported in part through a NIH⁄NCI grant (5 P30 CA13696) and obtained using funds from the NIH-NCRR (1S10OD014584) to L.A.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liza A. Pon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Higuchi-Sanabria, R., Swayne, T.C., Boldogh, I.R., Pon, L.A. (2016). Live-Cell Imaging of Mitochondria and the Actin Cytoskeleton in Budding Yeast. In: Gavin, R. (eds) Cytoskeleton Methods and Protocols. Methods in Molecular Biology, vol 1365. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3124-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3124-8_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3123-1

  • Online ISBN: 978-1-4939-3124-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics