Skip to main content

Nanotoxicology

  • Protocol
  • First Online:
In Vitro Toxicology Systems

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1726 Accesses

Abstract

This chapter highlights the specific challenges related to in vitro toxicity testing of nanomaterials. The difficulties presented are related to the very complex behavior of nanomaterials during the in vitro tests, namely, dissolution, aggregation, sedimentation, and formation of a protein corona. All these aspects modify the physicochemical characteristics of nanomaterials and their transport to the cell layer and cellular uptake and affect the effective cellular dose and response. The article underlines the necessity, for the toxicologist, to characterize and control all these features to be able to provide a reliable toxicity result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    COMMISSION RECOMMENDATION of 18 October 2011 on the definition of nanomaterial (2011/696/EU). See http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:201. 1:275:0038:0040:EN:PDF online.

References

  1. OECD (2012) Guidance on sample preparation and dosimetry for the safety testing of manufactured nanomaterials. Series on the safety of manufactured nanomaterials no. 36. ENV/JM/MONO(2012)40

    Google Scholar 

  2. Linsinger T, Roebben G, Gilliland D, Calzolai L, Rossi F, Gibson P, Klein C (2012) Requirements on measurements for the implementation of the European Commission definition of the term ‘nanomaterial’. In: Union, P. O. o. t. E. (ed) http://publications.jrc.ec.europa.eu/repository/handle/111111111/26399

  3. Bouwmeester H, Lynch I, Marvin H, Dawson K, Berges M, Braguer D, Byrne H, Casey A, Chambers G, Clift M, Elia G, Fernandes T, Fjellsboe L, Hatto P, Juillerat L, Klein C, Kreyling W, Nickel C, Riediker M, Stone V (2011) Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5:1–11

    Article  CAS  PubMed  Google Scholar 

  4. Taurozzi J, Hackley V, Wiesner M (2013) A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media. Nanotoxicology 7:389–401

    Article  CAS  PubMed  Google Scholar 

  5. Cohen J, DeLoid G, Pyrgiotakis G, Demokritou P (2013) Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry. Nanotoxicology 7:417–431

    Article  CAS  PubMed  Google Scholar 

  6. Cho EC, Au L, Zhang Q, Xia Y (2010) The effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells. Small 6(4):517–522

    Article  CAS  PubMed  Google Scholar 

  7. Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y, Yu L, Liang XJ (2011) Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5(11):8629–8639

    Article  CAS  PubMed  Google Scholar 

  8. Varela JA, Bexiga MG, Åberg C, Simpson JC, Dawson KA (2012) Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells. J Nanobiotechnology 24:10–39

    Google Scholar 

  9. Guo YY, Zhang J, Zheng YF, Yang J, Zhu XQ (2011) Cytotoxic genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro. Mutat Res 721(2):184–191

    Article  CAS  PubMed  Google Scholar 

  10. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231

    Article  CAS  PubMed  Google Scholar 

  11. Fenoglio I, Aldieri E, Gazzano E, Cesano F, Colonna M, Scarano D, Mazzucco G, Attanasio A, Yakoub Y, Lison D, Fubini B (2012) Thickness of multiwalled carbon nanotubes affects their lung toxicity. Chem Res Toxicol 25(1):74–82

    Article  CAS  PubMed  Google Scholar 

  12. Barillet S, Jugan ML, Laye M, Leconte Y, Herlin-Boime N, Reynaud C, Carrière M (2010) In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: cyto-, genotoxicity and oxidative stress. Toxicol Lett 198(3):324–330

    Article  CAS  PubMed  Google Scholar 

  13. Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30(23–24):3891–3914

    Article  CAS  PubMed  Google Scholar 

  14. Hsieh SF, Bello D, Schmidt DF, Pal AK, Stella A, Isaacs JA, Rogers EJ (2013) Mapping the biological oxidative damage of engineered nanomaterials. Small 9:1853–1865. doi:10.1002/smll.201201995

    Article  CAS  PubMed  Google Scholar 

  15. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383

    Article  CAS  PubMed  Google Scholar 

  16. Gonzalez L, Thomassen LC, Plas G, Rabolli V, Napierska D, Decordier I, Roelants M, Hoet PH, Kirschhock CE, Martens JA, Lison D, Kirsch-Volders M (2010) Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models. Nanotoxicology 4:382–395

    Article  PubMed  Google Scholar 

  17. Ruenraroengsak P, Novak P, Berhanu D, Thorley AJ, Valsami-Jones E, Gorelik J, Korchev YE, Tetley TD (2012) Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles. Nanotoxicology 6(1):94–108

    Article  CAS  PubMed  Google Scholar 

  18. Bexiga MG, Varela JA, Wang F, Fenaroli F, Salvati A, Lynch I, Simpson JC, Dawson KA (2011) Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology 5(4):557–567

    Article  CAS  PubMed  Google Scholar 

  19. Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7(12):779–786

    Article  CAS  PubMed  Google Scholar 

  20. Cui W, Li J, Zhang Y, Rong H, Lu W, Jiang L (2012) Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomedicine 8(1):46–53

    Article  CAS  PubMed  Google Scholar 

  21. Rabolli V, Thomassen LCJ, Uwambayinema F, Martens JA, Lison D (2011) The cytotoxic activity of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation. Toxicol Lett 206(2):197–203

    Article  CAS  PubMed  Google Scholar 

  22. Albanese A, Chan WCW (2011) Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5(7):5478–5489

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Yin L, Tang M, Pu Y (2010) Optimized method for preparation of TiO2 nanoparticles dispersion for biological study. J Nanosci Nanotechnol 10(8):5213–5219

    Article  CAS  PubMed  Google Scholar 

  24. Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP (2010) Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4(12):7481–7491

    Article  CAS  PubMed  Google Scholar 

  25. Chang Y-N, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850–2871

    Article  CAS  Google Scholar 

  26. Singh RP, Ramarao P (2012) Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett 213(2):249–259

    Article  CAS  PubMed  Google Scholar 

  27. Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    Article  CAS  PubMed  Google Scholar 

  28. Buerki-Thurnherr T, Xiao L, Diener L, Arslan O, Hirsch C, Maeder-Althaus X, Grieder K, Wampfler B, Mathur S, Wick P, Krug HF (2013) In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology 7:402–416

    Article  CAS  PubMed  Google Scholar 

  29. Gunawan C, Teoh WY, Marquis CP, Amal R (2011) Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 5(9):7214–7225

    Article  CAS  PubMed  Google Scholar 

  30. Piret JP, Vankoningsloo S, Mejia J, Noël F, Boilan E, Lambinon F, Zouboulis CC, Masereel B, Lucas S, Saout C, Toussaint O (2012) Differential toxicity of copper (II) oxide nanoparticles of similar hydrodynamic diameter on human differentiated intestinal Caco-2 cell monolayers is correlated in part to copper release and shape. Nanotoxicology 6(7):789–803

    Article  CAS  PubMed  Google Scholar 

  31. Pratsinis A, Hervella P, Leroux JC, Pratsinis SE, Sotiriou GA (2013) Toxicity of silver nanoparticles in macrophages. Small 9:2576–2584. doi:10.1002/smll.201202120

    Article  CAS  PubMed  Google Scholar 

  32. Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22(16):4548–4554

    Article  CAS  Google Scholar 

  33. Hsieh SF, Bello D, Schmidt D, Pal A, Rogers E (2012) Biological oxidative damage by carbon nanotubes: fingerprint or footprint? Nanotoxicology 6(1):61–76

    Article  CAS  PubMed  Google Scholar 

  34. Bello D, Hsieh SF, Schmidt D, Rogers E (2009) Nanomaterials properties vs. biological oxidative damage: implications for toxicity screening and exposure assessment. Nanotoxicology 3(3):249–261

    Article  CAS  Google Scholar 

  35. Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95(2):300–312

    Article  CAS  PubMed  Google Scholar 

  36. Lison D, Thomassen LCJ, Rabolli V, Gonzalez L, Napierska D, Seo JW, Kirsch-Volders M, Hoet P, Kirschhock CEA, Martens JA (2008) Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays. Toxicol Sci 104(1):155–162

    Article  CAS  PubMed  Google Scholar 

  37. Cho EC, Zhang Q, Xia Y (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6(6):385–391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Hinderliter PM, Minard KR, Orr G, Chrisler WB, Thrall BD, Pounds JG, Teeguarden JG (2010) ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol 7(1):36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ahmad Khanbeigi R, Kumar A, Sadouki F, Lorenz C, Forbes B, Dailey LA, Collins H (2012) The delivered dose: applying particokinetics to in vitro investigations of nanoparticle internalization by macrophages. J Control Release 162(2):259–266

    Article  CAS  PubMed  Google Scholar 

  40. Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  CAS  PubMed  Google Scholar 

  41. Su G, Zhoummm H, Mu Q, Zhang Y, Li L, Jiao P, Jiang G, Yan B (2012) Effective surface charge density determines the electrostatic attraction between nanoparticles and cells. J Phys Chem 116(8):4993–4998

    CAS  Google Scholar 

  42. Lesniak A, Salvati A, Santos-Martinez M, Radomski M, Dawson K, Aberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135(4):1438–1444

    Article  CAS  PubMed  Google Scholar 

  43. Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6(1):39–44

    Article  CAS  PubMed  Google Scholar 

  44. Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y (2011) Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7(10):1322–1337

    Article  CAS  PubMed  Google Scholar 

  45. Saha K, Kim ST, Yan B, Miranda OR, Alfonso FS, Shlosman D, Rotello VM (2013) Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells. Small 9(2):300–305

    Article  PubMed Central  PubMed  Google Scholar 

  46. Lesniak A, Fenaroli F, Monopoli MP, Öberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6(7):5845–5857

    Article  CAS  PubMed  Google Scholar 

  47. Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  CAS  PubMed  Google Scholar 

  48. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  CAS  PubMed  Google Scholar 

  49. Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550

    Article  CAS  PubMed  Google Scholar 

  50. Ojea-Jiménez I, García-Fernández L, Lorenzo J, Puntes VF (2012) Facile preparation of cationic gold nanoparticle-bioconjugates for cell penetration and nuclear targeting. ACS Nano 6(9):7692–7702

    Article  PubMed  Google Scholar 

  51. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14(1):1–16

    Article  CAS  PubMed  Google Scholar 

  52. Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A 102(27):9469–9474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105(33):11613–11618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2007) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2(1):85–96

    Article  Google Scholar 

  55. Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2012) Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 86(7):1123–1136

    Article  CAS  PubMed  Google Scholar 

  56. Wörle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261–1268

    Article  PubMed  Google Scholar 

  57. Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, Chambers G (2007) Spectroscopic analysis conforms the interactions between single walled carbon annotates and various dyes commonly used to assess cytotoxicity. Carbon 45:1425–1432

    Article  CAS  Google Scholar 

  58. Ponti J, Colognato R, Rauscher H, Gioria S, Broggi F, Franchini F, Pascual C, Giudetti G, Rossi F (2010) Colony forming efficiency and microscopy analysis of multi-wall carbon nanotubes cell interaction. Toxicol Lett 197:29–37

    Article  CAS  PubMed  Google Scholar 

  59. Stone V, Johnston H, Schins RP (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39(7):613–626

    Article  CAS  PubMed  Google Scholar 

  60. Hirsch C, Roesslein M, Krug HF, Wick P (2011) Nanomaterial cell interactions: are current in vitro tests reliable? Nanomedicine 6(5):837–847

    Article  CAS  PubMed  Google Scholar 

  61. Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Limitations and relative utility of screening assays to assess engineered nanoparticles toxicity in a human cell line. Toxicol Appl Pharmacol 234:222–235

    Article  CAS  PubMed  Google Scholar 

  62. Belyanskaya L, Weigel S, Hirsch C, Tobler U, Krug HF, Wick P (2009) Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology 30(4):702–711

    Article  CAS  PubMed  Google Scholar 

  63. Han X, Gelein R, Corson N, Wade-Mercer P, Jiang J, Biswas P, Finkelstein JN, Elder A, Oberdörster G (2011) Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology 287(1–3):99–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Holder AL, Goth-Goldstein R, Lucas D, Koshland CP (2012) Particle-induced artifacts in the MTT and LDH viability assays. Chem Res Toxicol 25(9):1885–1892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Oostingh GJ, Casals E, Italiani P, Colognato R, Stritzinger R, Ponti J, Pfaller T, Kohl Y, Ooms D, Favilli F, Leppens H, Lucchesi D, Rossi F, Nelissen I, Thielecke H, Puntes VF, Duschl A, Boraschi D (2011) Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Part Fibre Toxicol 8(1):8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Karlsson HL (2010) The comet assay in nanotoxicology research. Anal Bioanal Chem 398(2):651–666

    Article  CAS  PubMed  Google Scholar 

  67. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732

    Article  CAS  PubMed  Google Scholar 

  68. Uboldi C, Giudetti G, Broggi F, Gilliland D, Ponti J, Rossi F (2012) Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation or genotoxicity in Balb/3T3 mouse fibroblasts. Mutat Res 745:11–20

    Article  CAS  PubMed  Google Scholar 

  69. De Angelis I, Barone F, Zijno A, Bizzarri L, Russo MT, Pozzi R, Franchini F, Giudetti G, Uboldi C, Ponti J, Rossi F, De Berardis B (2013) Comparative study of ZnO and TiO(2) nanoparticles: physicochemical characterisation and toxicological effects on human colon carcinoma cells. Nanotoxicology 7:1361–72

    Article  PubMed  Google Scholar 

  70. Male KB, Lachance B, Hrapovic S, Sunahara G, Luong JH (2008) Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal Chem 80(14):5487–5493

    Article  CAS  PubMed  Google Scholar 

  71. Tarantola M, Schneider D, Sunnick E, Adam H, Pierrat S, Rosman C, Breus V, Sönnichsen C, Basché T, Wegener J, Janshoff A (2009) Cytotoxicity of metal and semiconductor nanoparticles indicated by cellular micromotility. ACS Nano 3(1):213–222

    Article  CAS  PubMed  Google Scholar 

  72. Mariani V, Ponti J, Giudetti G, Broggi F, Marmorato P, Gioria S, Franchini F, Rauscher H, Rossi F (2011) Online monitoring of cell metabolism to assess the toxicity of nanoparticles: the case of cobalt ferrite. Nanotoxicology 6(3):272–287

    Article  PubMed  Google Scholar 

  73. Culcasi M, Benameur L, Mercier A, Lucchesi C, Rahmouni H, Asteian A, Casano G, Botta A, Kovacic H, Pietri S (2012) EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation. Chem Biol Interact 199(3):161–176

    Article  CAS  PubMed  Google Scholar 

  74. He W, Zhou YT, Wamer WG, Boudreau MD, Yin JJ (2012) Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33(30):7547–7555

    Article  CAS  PubMed  Google Scholar 

  75. Yin JJ, Liu J, Ehrenshaft M, Roberts JE, Fu PP, Mason RP, Zhao B (2012) Phototoxicity of nano titanium dioxides in HaCaT keratinocytes—generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol 263(1):81–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Fenoglio I, Greco G, Tomatis M, Muller J, Raymundo-Piñero E, Béguin F, Fonseca A, Nagy JB, Lison D, Fubini B (2008) Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem Res Toxicol 21(9):1690–1697

    Article  CAS  PubMed  Google Scholar 

  77. Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Höhr D, Fubini B, Martra G, Fenoglio I, Borm PJ, Schins RP (2007) Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particle. Toxicol Appl Pharmacol 222(2):141–151

    Article  CAS  PubMed  Google Scholar 

  78. Editorial and Correspondence (2013) Nat Nanotechnol 8(2):69–76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kinsner-Ovaskainen, A., Colpo, P., Ponti, J., Rossi, F. (2014). Nanotoxicology. In: Bal-Price, A., Jennings, P. (eds) In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0521-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0521-8_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0520-1

  • Online ISBN: 978-1-4939-0521-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics