Skip to main content
Log in

The comet assay in nanotoxicology research

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanoscale particles can have impressive and useful characteristics, but the same properties may be problematic for human health. From this perspective it is critical to assess the ability of nanoparticles to cause DNA damage. This review focuses on the use of the comet assay in nanotoxicology research. In the alkaline version of the assay, DNA strand breaks and alkali-labile sites are detected and oxidatively damaged DNA can be analyzed using the enzyme formamidopyrimidine glycosylase. The article reviews studies that have used the comet assay to investigate the toxicity of manufactured nanoparticles. It is shown that at least 46 cellular in vitro studies and several in vivo studies have used the comet assay and that the majority of the nanoparticles tested cause DNA strand breaks or oxidative DNA lesions. This is not surprising considering the sensitivity of the method and the reactivity of many nanomaterials. Interactions between the particles and the assay cannot be totally excluded and need further consideration. It is concluded that studies including several particle types, to enable the assessment of their relative potency, are valuable as are studies focusing both on comet assay end points and mutagenicity. Finally, the article discusses the potential future use of the comet assay in human biomonitoring studies, which could provide valuable information for hazard identification of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nel A, Xia T, Madler L, Li N (2006) Science 311(5761):622–627

    Article  CAS  Google Scholar 

  2. Schins RP (2002) Inhal Toxicol 14(1):57–78

    Article  CAS  Google Scholar 

  3. Knaapen AM, Borm PJ, Albrecht C, Schins RP (2004) Int J Cancer 109(6):799–809

    Article  CAS  Google Scholar 

  4. Terry LJ, Shows EB, Wente SR (2007) Science 318(5855):1412–1416

    Article  CAS  Google Scholar 

  5. Chen M, von Mikecz A (2005) Exp Cell Res 305(P):51–62

    Article  CAS  Google Scholar 

  6. AshaRani PV, Kah Mun GL, Hande MP, Valiyaveettil S (2009) ACS Nano 3(2):279–290

    Article  CAS  Google Scholar 

  7. Gonzalez L, Dominique Lison D, Kirsch-Volders M (2008) Nanotoxicology 2(4):252–273

    Article  Google Scholar 

  8. Banasik A, Lankoff A, Piskulak A, Adamowska K, Lisowska H, Wojcik A (2005) Environ Toxicol 20(4):402–406

    Article  CAS  Google Scholar 

  9. Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F (2009) Mutat Res 681(2–3):241–258

    CAS  Google Scholar 

  10. Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH (2009) Biomaterials 30(23–24):3891–3914

    Article  CAS  Google Scholar 

  11. Folkmann JK, Risom L, Hansen CS, Loft S, Møller P (2007) Toxicology 237(1–3):134–144

    Article  CAS  Google Scholar 

  12. Danielsen PH, Loft S, Kocbach A, Schwarze PE, Møller P (2009) Mutat Res 674(1–2):116–122

    CAS  Google Scholar 

  13. Karlsson HL, Ljungman AG, Lindbom J, Möller L (2006) Toxicol Lett 165(3):203–211

    Article  CAS  Google Scholar 

  14. Karlsson HL, Nilsson L, Möller L (2005) Chem Res Toxicol 18(1):19–23

    Article  CAS  Google Scholar 

  15. Östling O, Johanson KJ (1984) Biochem Biophys Res Commun 123(1):291–298

    Article  Google Scholar 

  16. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) Exp Cell Res 175(1):184–191

    Article  CAS  Google Scholar 

  17. Dusinska M, Collins AR (2008) Mutagenesis 23(3):191–205

    Article  CAS  Google Scholar 

  18. Grigaravicius P, Rapp A, Greulich KO (2009) Mutagenesis 24(2):191–197

    Article  CAS  Google Scholar 

  19. Collins AR, Oscoz AA, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M, Smith CC, Stetina R (2008) Mutagenesis 23(3):143–151

    Article  CAS  Google Scholar 

  20. Azqueta A, Shaposhnikov S, Collins AR (2009) Mutat Res 674(1–2):101–108

    CAS  Google Scholar 

  21. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E et al (2000) Environ Mol Mutagen 35(3):206–221

    Article  CAS  Google Scholar 

  22. Lovell DP, Omori T (2008) Mutagenesis 23(3):171–182

    Article  CAS  Google Scholar 

  23. Collins AR, Duthie SJ, Dobson VL (1993) Carcinogenesis 14(9):1733–1735

    Article  CAS  Google Scholar 

  24. Gedik CM, Collins A (2005) FASEB J 19(1):82–84

    CAS  Google Scholar 

  25. Forchhammer L, Johansson C, Loft S, Möller L, Godschalk RW, Langie SA, Jones GD, Kwok RW et al (2009) Mutagenesis 25(2):125–132

    Google Scholar 

  26. Johansson C, Møller P, Forchhammer L, Loft S, Godschalk RW, Langie SA, Lumeij S, Jones GD et al (2009) Mutagenesis 25(2):113–123

    Google Scholar 

  27. Collins AR, Dusinska M, Horvathova E, Munro E, Savio M, Stetina R (2001) Mutagenesis 16(4):297–301

    Article  CAS  Google Scholar 

  28. Warheit DB (2008) Toxicol Sci 101(2):183–185

    Article  CAS  Google Scholar 

  29. Bernardeschi M, Guidi P, Scarcelli V, Frenzilli G, Nigro M (2010) Anal Bioanal Chem 396(2):619–623

    Google Scholar 

  30. Falck GC, Lindberg HK, Suhonen S, Vippola M, Vanhala E, Catalan J, Savolainen K, Norppa H (2009) Hum Exp Toxicol 28(6–7):339–352

    Article  CAS  Google Scholar 

  31. Gopalan RC, Osman IF, Amani A, De Matas M, Anderson D (2009) Nanotoxicology 3(1):33–39

    Article  CAS  Google Scholar 

  32. Kang SJ, Kim BM, Lee YJ, Chung HW (2008) Environ Mol Mutagen 49(5):399–405

    Article  CAS  Google Scholar 

  33. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Chem Res Toxicol 21(9):1726–1732

    Article  CAS  Google Scholar 

  34. Wang JJ, Sanderson BJ, Wang H (2007) Mutat Res 628(2):99–106

    CAS  Google Scholar 

  35. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J (1997) FEBS Lett 418(1–2):87–90

    Article  CAS  Google Scholar 

  36. Gerloff K, Albrecht C, Boots AW, Förster I, Schins RPF (2009) Nanotoxicology 3(4):355–364

    Article  CAS  Google Scholar 

  37. Nakagawa Y, Wakuri S, Sakamoto K, Tanaka N (1997) Mutat Res 394(1–3):125–132

    CAS  Google Scholar 

  38. Vevers WF, Jha AN (2008) Ecotoxicology 17(5):410–420

    Article  CAS  Google Scholar 

  39. Bhattacharya K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E (2009) Part Fibre Toxicol 6(17)

  40. Gurr JR, Wang AS, Chen CH, Jan KY (2005) Toxicology 213(1–2):66–73

    Article  CAS  Google Scholar 

  41. Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Toxicol Lett 188(2):112–118

    Article  CAS  Google Scholar 

  42. Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) Toxicol Lett 185(3):211–218

    Article  CAS  Google Scholar 

  43. Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) J Appl Toxicol 29(1):69–78

    Article  Google Scholar 

  44. Midander K, Cronholm P, Karlsson HL, Elihn K, Möller L, Leygraf C, Wallinder IO (2009) Small 5(3):389–399

    Article  CAS  Google Scholar 

  45. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Environ Sci Technol 41(11):4158–4163

    Article  CAS  Google Scholar 

  46. Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E, Migliore L (2008) Mutagenesis 23(5):377–382

    Article  CAS  Google Scholar 

  47. Ponti J, Sabbioni E, Munaro B, Broggi F, Marmorato P, Franchini F, Colognato R, Rossi F (2009) Mutagenesis 24(5):439–445

    Article  CAS  Google Scholar 

  48. Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, Surprenant A, Lopez-Castejon G et al (2009) Nat Nanotechnol 4(12):876–883

    Article  CAS  Google Scholar 

  49. Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, Fisher J, Ingham E et al (2010) Biomaterials 28(19):2946–2958

    Article  Google Scholar 

  50. Grigg J, Tellabati A, Rhead S, Almeida GM, Higgins JA, Bowman KJ, Jones GD, Howes PB (2009) Nanotoxicology 3(4):348–354

    Article  CAS  Google Scholar 

  51. Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, Ray PC (2010) Chem Phys Lett 487(1–3):92–96

    Article  CAS  Google Scholar 

  52. Auffan M, Decome L, Rose J, Orsiere T, De Meo M, Briois V, Chaneac C, Olivi L et al (2006) Environ Sci Technol 40(14):4367–4373

    Article  CAS  Google Scholar 

  53. Omidkhoda A, Mozdarani H, Movasaghpoor A, Fatholah AA (2007) Toxicol In Vitro 21(6):1191–1196

    Article  CAS  Google Scholar 

  54. Barnes CA, Elsaesser A, Arkusz J, Smok A, Palus J, Lesniak A, Salvati A, Hanrahan JP et al (2008) Nano Lett 8(9):3069–3074

    Article  CAS  Google Scholar 

  55. Wang JJ, Sanderson BJS, He W (2007) Environ Mol Mutagen 48151–157

  56. Jin Y, Kannan S, Wu M, Zhao JX (2007) Chem Res Toxicol 20(8):1126–1133

    Article  CAS  Google Scholar 

  57. Auffan M, Rose J, Orsiere T, De Meo M, Thill A, Zeyons O, Proux O, Masion A et al (2009) Nanotoxicology 3(2):161–171

    Article  CAS  Google Scholar 

  58. Pierscionek BK, Li Y, Yasseen AA, Colhoun LM, Schachar RA, Chen W (2010) Nanotechnology 21(3)

  59. Pelka J, Gehrke H, Esselen M, Turk M, Crone M, Brase S, Muller T, Blank H et al (2009) Chem Res Toxicol 22(4):649–659

    Article  CAS  Google Scholar 

  60. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K et al (2004) Nano Lett 4(11):2163–2169

    Article  CAS  Google Scholar 

  61. Lin MH, Hsu TS, Yang PM, Tsai MY, Perng TP, Lin LY (2009) Int J Radiat Biol 85(3):214–226

    Article  CAS  Google Scholar 

  62. Jacobsen NR, Saber AT, White P, Moller P, Pojana G, Vogel U, Loft S, Gingerich J et al (2007) Environ Mol Mutagen 48(6):451–461

    Article  CAS  Google Scholar 

  63. Mroz RM, Schins RP, Li H, Drost EM, Macnee W, Donaldson K (2007) J Physiol Pharmacol 58(Pt 2):461–470, Suppl 5

    Google Scholar 

  64. Mroz RM, Schins RP, Li H, Jimenez LA, Drost EM, Holownia A, MacNee W, Donaldson K (2008) Eur Respir J 31(2):241–251

    Article  CAS  Google Scholar 

  65. Zhong BZ, Whong WZ, Ong TM (1997) Mutat Res 393(3):181–187

    CAS  Google Scholar 

  66. Don Porto Carero A, Hoet PH, Verschaeve L, Schoeters G, Nemery B (2001) Environ Mol Mutagen 37(2):155–163

    Article  CAS  Google Scholar 

  67. Dhawan A, Taurozzi JS, Pandey AK, Shan W, Miller SM, Hashsham SA, Tarabara VV (2006) Environ Sci Technol 40(23):7394–7401

    Article  CAS  Google Scholar 

  68. Jacobsen NR, Pojana G, White P, Moller P, Cohn CA, Korsholm KS, Vogel U, Marcomini A et al (2008) Environ Mol Mutagen 49(6):476–487

    Article  CAS  Google Scholar 

  69. Zeni O, Palumbo R, Bernini R, Zeni L, Sarti M, Scarfi MR (2008) Sensors 8(1):488–499

    Article  CAS  Google Scholar 

  70. Kisin ER, Murray AR, Keane MJ, Shi XC, Schwegler-Berry D, Gorelik O, Arepalli S, Castranova V et al (2007) J Toxicol Environ Health A 70(24):2071–2079

    Article  CAS  Google Scholar 

  71. Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalan J, Savolainen K, Norppa H (2009) Toxicol Lett 186(3):166–173

    Article  CAS  Google Scholar 

  72. Pacurari M, Yin XJ, Min Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS, Chirila M, Endo M et al (2008) Nanotoxicology 2(3):155–170

    Article  CAS  Google Scholar 

  73. Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Cancer Res 69(22):8784–8789

    Article  CAS  Google Scholar 

  74. Jacobsen NR, Møller P, Jensen KA, Vogel U, Ladefoged O, Loft S, Wallin H (2009) Part Fibre Toxicol 6(2)

  75. Balasubramanyam A, Sailaja N, Mahboob M, Rahman MF, Hussain SM, Grover P (2009) Mutagenesis 24(3):245–251

    Article  CAS  Google Scholar 

  76. Totsuka Y, Higuchi T, Imai T, Nishikawa A, Nohmi T, Kato T, Masuda S, Kinae N et al (2009) Part Fibre Toxicol 6(23)

  77. Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY (2010) Soil Biol Biochem 42(4):586–591

    Article  CAS  Google Scholar 

  78. Lee S-W, Kim S-M, Choi J (2009) Environ Toxicol Pharmacol 28(1):86–91

    Article  CAS  Google Scholar 

  79. Doak SH, Griffiths SM, Manshian B, Singh N, Williams PM, Brown AP, Jenkins GJ (2009) Mutagenesis 24(4):285–293

    Article  CAS  Google Scholar 

  80. Stone V, Johnston H, Schins RP (2009) Crit Rev Toxicol 39(7):613–626

    Article  CAS  Google Scholar 

  81. Karlsson HL, Nygren J, Möller L (2004) Mutat Res 565(1):1–10

    CAS  Google Scholar 

  82. Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS, Sbarra D et al (2008) Environ Health Perspect 116(9):1211–1217

    Article  CAS  Google Scholar 

  83. Sasaki YF, Sekihashi K, Izumiyama F, Nishidate E, Saga A, Ishida K, Tsuda S (2000) Crit Rev Toxicol 30(6):629–799

    Article  CAS  Google Scholar 

  84. Bonassi S, Znaor A, Ceppi M, Lando C, Chang WP, Holland N, Kirsch-Volders M, Zeiger E et al (2007) Carcinogenesis 28(3):625–631

    Article  CAS  Google Scholar 

  85. Hagmar L, Bonassi S, Stromberg U, Brogger A, Knudsen LE, Norppa H, Reuterwall C (1998) Cancer Res 58(18):4117–4121

    CAS  Google Scholar 

  86. Møller P (2006) Mutat Res 612(2):84–104

    Article  Google Scholar 

  87. Avogbe PH, Ayi-Fanou L, Autrup H, Loft S, Fayomi B, Sanni A, Vinzents P, Møller P (2005) Carcinogenesis 26(3):613–620

    Article  CAS  Google Scholar 

  88. Brauner EV, Forchhammer L, Møller P, Simonsen J, Glasius M, Wahlin P, Raaschou-Nielsen O, Loft S (2007) Environ Health Perspect 115(8):1177–1182

    Article  CAS  Google Scholar 

  89. Vinzents PS, Møller P, Sorensen M, Knudsen LE, Hertel O, Jensen FP, Schibye B, Loft S (2005) Environ Health Perspect 113(11):1485–1490

    Article  CAS  Google Scholar 

  90. Møller P, Folkmann JK, Forchhammer L, Brauner EV, Danielsen PH, Risom L, Loft S (2008) Cancer Lett 266(1):84–97

    Article  Google Scholar 

  91. Møller P (2006) Basic Clin Pharmacol Toxicol 98(4):336–345

    Article  Google Scholar 

  92. Bernardeschi M, Guidi P, Scarcelli V, Frenzilli G, Nigro M (2010) Anal Bioanal Chem 396(2):619–623

    Article  CAS  Google Scholar 

  93. Reeves JF, Davies SJ, Dodd NJ, Jha AN (2008) Mutat Res 640(1–2):113–122

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks colleges in the research group of Analytical Toxicology as well as Mikael Karlsson, Södertörn University, and Jonas Nygren, European Chemicals Agency, for critical reading and commenting on the review. The author is a member of Stockholm Particle Group (SPG) as well as a partner of ECNIS, a network of excellence operating within the European Union Sixth Framework Programme, priority 5: "Food Quality and Safety" (contract no. 513943). This work was financially supported by the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) and the Swedish Research Council (Vetenskapsrådet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna L. Karlsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsson, H.L. The comet assay in nanotoxicology research. Anal Bioanal Chem 398, 651–666 (2010). https://doi.org/10.1007/s00216-010-3977-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3977-0

Keywords

Navigation