Skip to main content

Oxidative Stress and Polyunsaturated Lipid Peroxidation Products in the CNS: Focus on Retinal Bisretinoids and DHA-Derived Carboxyethylpyrroles as Potential Inducers of Vision-Threatening Pathology

  • Chapter
  • First Online:
Studies on Psychiatric Disorders

Abstract

Oxidative stress is an important process in the etiology of different age-dependent diseases of the central nervous system (CNS). Oxidative stress usually runs in parallel with lipid peroxidation, which, via a chain reaction, contributes to the progression of misbalanced redox homeostasis. This inevitably leads to pathological states in which both reactive oxygen species (ROS) and metabolites of oxidatively truncated polyunsaturated fatty acids (PUFAs), i.e., carboxyalkylpyrroles (CAPs), may play a prominent role. Depending on the CNS tissue, other mechanisms may also contribute to the formation of potentially harmful compounds, and the retina is a good example of what may happen when oxidative stress and CAPs play in concert. In this survey, the vision-threatening disease, i.e., age-related macular degeneration (AMD), will be taken as an example of the CNS disorder, whose pathogenesis has a strong background of both oxidative stress and lipid peroxidation products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A2E:

N-Retinylidene-N-retinylethanolamine

AA ARA:

Arachidonic acid

AGE:

Advanced glycation end product

ALA:

α-Linolenic acid

AMD:

Age-related macular degeneration

AT-RAL:

All-trans retinal

AT-RvD:

Aspirin-triggered resolvin D

CAP:

Carboxyalkylpyrrole

CEP:

Carboxyethylpyrrole

CEP-HSA:

Carboxyethylpyrrole-modified human serum albumin

CEP-MSA:

Carboxyethylpyrrole-modified mouse serum albumin

CHP:

Carboxyheptylpyrrole

CNS:

Central nervous system

CNV:

Choroidal neovascularization

CPP:

Carboxypropylpyrrole

DGLA:

Dihomo-γ-linoleic acid

DHA:

Docosahexaenoic acid

DPA:

Docosapentaenoic acid

EP:

Ethylpyrrole

EPA:

Eicosapentaenoic acid

ETA:

Eicosatetraenoic acid

GLA:

γ-Linoleic acid

HHE:

4-Hydroxyhexenal

HNE:

4-Hydroxy-2-nonenal

HODA:

9-Hydroxy-12-oxydec-10-enoic acid

HOHA:

4-Hydroxy-7-oxyhept-5-enoic acid

HOOA:

5-Hydroxy-8-oxyoct-6-enoic acid

LA:

Linoleic acid

MDA:

Malondialdehyde

NPD1:

Neuroprotectin D1

POS:

Photoreceptor outer segment

PP:

Pentylpyrrole

PUFAs:

Polyunsaturated fatty acids

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RPE:

Retinal pigment epithelium

RvD:

Resolvin D

RvE:

Resolvin E

SOD:

Superoxide dismutase

TLR:

Toll-like receptor

TNFα:

Tumor necrosis factor α

VEGF:

Vascular endothelial growth factor

References

  • Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 2012:936486

    Article  PubMed Central  PubMed  Google Scholar 

  • Algvere PV, Marshall J, Seregard S (2006) Age-related maculopathy and the impact of blue light hazard. Acta Ophthalmol Scad 84:4–15

    Article  CAS  Google Scholar 

  • Alvarez RA, Aguirre GD, Acland GM, Anderson RE (1994) Docosapentaenoic acid is converted to docosahexaenoic acid in the retinas of normal and prcd-affected miniature poodle dogs. Invest Ophthalmol Vis Sci 35:402–408

    CAS  PubMed  Google Scholar 

  • Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR et al (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29:95–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bazan NG (2006) Cell survival matters: docosahexaenoic acid signaling, neuroprotection and photoreceptors. Trends Neurosci 29:263–271

    Article  CAS  PubMed  Google Scholar 

  • Bazan NG (2009) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer disease. J Lipid Res 50:S400–S405

    Article  PubMed Central  PubMed  Google Scholar 

  • Bazan NG, Calandria JM, Serhan CN (2010) Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived neuroprotectin D1. J Lipid Res 51:2018–2031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  CAS  PubMed  Google Scholar 

  • Besharse JC, Bok D (eds) (2011) The retina and its disorders. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  • Bhandary B, Marahatta A, Kim HR, Chae HJ (2012) An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14:343–356

    Article  Google Scholar 

  • Bhutto I, Lutty G (2012) Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Asp Med 33:295–317

    Article  CAS  Google Scholar 

  • Cai X, McGinnis JF (2012) Oxidative stress: the Achilles’ heel of neurodegenerative diseases of the retina. Front Biosci 17:1976–1995

    Article  CAS  Google Scholar 

  • Cai J, Nelson KC, Wu M, Sternberg P, Jones DP (2000) Oxidative damage and protection of the RPE. Prog Retin Eye Res 19:205–221

    Article  CAS  PubMed  Google Scholar 

  • Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99:14682–14687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Del Rio LA (2011) Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Arch Biochem Biophys 506:1–11

    Article  PubMed  Google Scholar 

  • Evans TA, Siedlak SL, Lu L, Fu X, Wang Z, McGinnis WR, Fakhoury E, Castellani RJ, Hazen SL, Walsh WJ, Lewis AT, Salomon RG, Smith MA, Perry G, Zhu X (2008) The autistic phenotype exhibits a remarkably localized modification of brain protein by products of free radical-induced lipid oxidation. Am J Biotechnol Biochem 4:61–72

    Article  CAS  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell control. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  • Ebrahem Q, Renganathan K, Sears J, Vasanji A, Gu X, Lu L, Salomon RG, Crabb JW, Anand-Apte B (2006) Carboxyethylpyrrole oxidative protein modifications stimulate neovascularization: implications for age-related macular degeneration. Proc Natl Acad Sci U S A 103:13480–13484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fossel M (2003) Cells, aging and human disease. Oxford University Press, New York

    Google Scholar 

  • Gaillard ER, Atherton SJ, Eldred G, Dillon J (1995) Photophysical studies on human retinal lipofuscin. Photochem Photobiol 61:448–453

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Meer SG, Miyagi M, Rayborn ME, Hollyfield JG, Crabb JW, Salomon RG (2003a) Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J Biol Chem 278:42027–42035

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Sun M, Gugiu B, Hazen S, Crabb JW, Salomon RG (2003b) Oxidatively truncated docosahexaenoate phospholipids: total synthesis, generation, and peptide adduction chemistry. J Org Chem 68:3749–3761

    Article  CAS  PubMed  Google Scholar 

  • Hageman GS, Luthert PJ, Chong NH, Johnson LV, Andersn DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging – a theory based on free-radical and radiation-chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  • Hollyfield JG, Salomon RG, Crabb JW (2003) Proteomic approaches to understanding age-related macular degeneration. Adv Exp Med Biol 533:83–89

    Article  CAS  PubMed  Google Scholar 

  • Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L, Ufret RL, Salomon RG, Perez VL (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14:194–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hollyfield JG, Perez VL, Salomon RG (2010) A hapten generated from an oxidation fragment of docosahexaenoic acid is sufficient to initiate age-related macular degeneration. Mol Neurobiol 41:290–298

    Article  CAS  PubMed  Google Scholar 

  • Hroudova J, Fisar Z (2011) Connectivity between mitochondrial functions and psychiatric disorders. Psychiatry Clin Neurosci 65:130–141

    Article  CAS  PubMed  Google Scholar 

  • Hunter JJ, Morgan JIW, Merigan WH, Sliney DH, Sparrow JR, Williams DR (2012) The susceptibility of the retina to photodamage from visible light. Prog Retin Eye Res 31:28–42

    Article  PubMed Central  PubMed  Google Scholar 

  • Issa PC, Chong NV, Scholl HPN (2011) The significance of the complement system for the pathogenesis of age-related macular degeneration – current evidence and translation into clinical application. Graefes Arch Clin Exp Ophthalmol 249:163–174

    Article  CAS  Google Scholar 

  • Jang YP, Matsuda H, Itagaki Y, Nakanishi K, Sparrow JR (2005) Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cell lipofuscin. J Biol Chem 280:39732–39739

    Article  CAS  PubMed  Google Scholar 

  • Jarret SG, Boulton ME (2012) Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med 33:399–417

    Article  Google Scholar 

  • Kaur K, Salomon RG, O’Neil J (1997) Hoff HF: (Carboxyalkyl)pyrroles in human plasma and oxidized low-density lipoproteins. Chem Res Toxicol 10:1387–1396

    Article  CAS  PubMed  Google Scholar 

  • Khandhadia S, Cipriani V, Yates JRW, Lotery AJ (2012) Age-related macular degeneration and the complement system. Immunobiology 217:127–146

    Article  CAS  PubMed  Google Scholar 

  • Kijlstra A, Tian Y, Kelly ER, Berendschot TTJM (2012) Lutein: more than just a filter for blue light. Prog Retin Eye Res 31:303–315

    Article  CAS  PubMed  Google Scholar 

  • Kim SR, Jang YP, Jockusch S, Fishkin NE, Turro NJ, Sparrow JR (2007) The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. Proc Natl Acad Sci U S A 104:19273–19278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinnunen K, Petrovski G, Moe MC, Berta A, Kaarniranta K (2012) Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmol 90:299–309

    Article  CAS  PubMed  Google Scholar 

  • Klettner A (2012) Oxidative stress induced cellular signaling in RPE cells. Front Biosci (Schol Ed) 4:392–411

    Article  Google Scholar 

  • Krohne TU, Kaemmerer E, Holz FG, Kopitz J (2010) Lipid peroxidation products reduce lysosomal protease activities in human retinal pigment epithelial cells via two different mechanisms of action. Exp Eye Res 90:261–266

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Gu X, Hong L, Laird J, Jaffe K, Choi J, Crabb JW, Salomon RG (2009) Synthesis and structural characterization of carboxyethylpyrrole-modified proteins: mediators of age-related macular degeneration. Bioorg Med Chem 17:7548–7561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lukiw WJ (2009) Docosahexaenoic acid and amyloid-β peptide signaling in Alzheimer’s disease. World Rev Nutr Diet 99:55–70

    Article  CAS  PubMed  Google Scholar 

  • MacLeish PR, Makino CL (2011) Photoresponses of rods and cones. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM (eds) Adler’s physiology of the eye. Elsevier/Saunders, Edinburgh, pp 411–428

    Chapter  Google Scholar 

  • Marc RE (2011) The synaptic organization of the retina. In: Levin LA, Nilsson SFE, Ver Hoeve J, Wu SM (eds) Adler’s physiology of the eye. Elsevier/Saunders, Edinburgh, pp 443–458

    Chapter  Google Scholar 

  • Mettu PS, Wielgus AR, Ong S, Cousins SW (2012) Retinal pigment epithelium response to oxidant injury in the pathogenesis of early age-related macular degeneration. Mol Aspects Med 33:376–398

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101:8491–8496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mukherjee PK, Chwala A, Loayza MS, Bazan NG (2007) Docosanoids are multifunctional regulators of neuronal cell integrity and fate: significance in aging and disease. Prostaglandins Leukot Essent Fatty Acids (PLEFA) 77:233–238

    Article  CAS  Google Scholar 

  • Murdaugh LS, Mandal S, Dill AE, Dillon J, Simon JD, Gaillard ER (2011) Compositional studies of human RPE lipofuscin: mechanisms of molecular modifications. J Mass Spectrom 46:90–95

    Article  CAS  PubMed  Google Scholar 

  • Novo E, Parola M (2008) Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 1:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Nowak JZ (1988) The isolated retina as a model of the CNS in pharmacology. Trends Pharmacol Sci 9:80–82

    Article  CAS  PubMed  Google Scholar 

  • Nowak JZ (2006) Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep 58:353–363

    CAS  PubMed  Google Scholar 

  • Nowak JZ (2012) Age-related macular degeneration (AMD): a critical appraisal of diet and dietary supplements as therapeutic modalities. Mil Pharm Med 4:1–16

    Google Scholar 

  • Nowak JZ (2013) Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: focus on age-related macular degeneration. Pharmacol Rep 65:288–304

    Google Scholar 

  • Ozawa Y, Sasaki M, Takahashi N, Kamoshita M, Miyake S, Tsubota K (2012) Neuroprotective effects of lutein in the retina. Curr Pharm Des 18:51–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pandya CD, Howell KR, Pillai A (2012) Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. doi:10.1016/j.pnpbp.2012.10.017

    PubMed Central  PubMed  Google Scholar 

  • Plafker SM, O’Mealey GB, Szweda LI (2012) Mechanisms for countering oxidative stress and damage in retinal pigment epithelium. Int Rev Cell Mol Biol 298:135–177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts JE (2001) Ocular phototoxicity. J Photochem Photobiol B 64:136–143

    Article  CAS  PubMed  Google Scholar 

  • Rozanowska M, Jarvis-Evans J, Korytowski W, Boulton ME, Burke JM, Sarna T (1995) Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem 270:18825–18830

    Article  CAS  PubMed  Google Scholar 

  • Rozanowska M, Pawlak A, Rozanowska B, Skumatz C, Zareba M, Boulton ME, Burke JM, Sarna T, Simon JD (2004) Age-related changes in the photoreactivity of retinal lipofuscin granules: role of chloroform-insoluble components. Invest Ophthalmol Vis Sci 45:1052–1060

    Article  PubMed  Google Scholar 

  • Salomon RG, Hong L, Hollyfield JG (2011) Discovery of carboxyethylpyrroles (CEPs): critical insights into AMD, autism, cancer, and wound healing from basic research on the chemistry of oxidized phospholipids. Chem Res Toxicol 24:1803–1816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sayre LM, Sha W, Xu G, Kaur K, Nadkarni D, Subbanagounder G, Salomon RG (1996) Immunochemical evidence supporting 2-pentylpyrrole formation on proteins exposed to 4-hydroxy-2-nonenal. Chem Res Toxicol 9:1194–1201

    Article  CAS  PubMed  Google Scholar 

  • Schutt F, Davies S, Kopitz J, Holz FG, Boulton ME (2000) Photodamage to human RPE cells by A2E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 41:2303–2308

    CAS  PubMed  Google Scholar 

  • Schutt F, Bergmann M, Holz FG, Dithmar S, Volcker HE, Kopitz J (2007) Accumulation of A2E in mitochondrial membranes of cultured RPE cells. Graefe’s Arch Clin Exp Ophthalmol 245:391–398

    Article  CAS  Google Scholar 

  • Serhan CN, Petasis NA (2011) Resolvins and protectins in inflammation resolution. Chem Rev 111:5922–5943

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shinohara M, Mirakaj V, Serhan CN (2012) Functional metabolomics reveals novel active products in the DHA metabolome. Front Immunol 3:81

    Article  PubMed Central  PubMed  Google Scholar 

  • Sparrow JR (2010) Bisretinoids of RPE lipofuscin: trigger for complement activation in age-related macular degeneration. Adv Exp Med Biol 703:63–74

    Article  CAS  PubMed  Google Scholar 

  • Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal photobiology. Exp Eye Res 80:595–606

    Article  CAS  PubMed  Google Scholar 

  • Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41: 1981–1989

    CAS  PubMed  Google Scholar 

  • Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK, Ueda K, Zhou J (2012) The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res 31:121–135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanito M, Brush RS, Elliott MH, Wicker LD, Henry KR, Anderson RE (2009) High levels of retinal membrane docosahexaenoic acid increase susceptibility to stress-induced degradation. J Lipid Res 50:807–819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terman A, Gustafsson B, Brunk UT (2006) Mitochondrial damage and intralysosomal degradation in cellular aging. Mol Asp Med 27:471–482

    Article  CAS  Google Scholar 

  • Thurman JM, Renner B, Kunchihapautham K, Fereirra VP, Pangburn MK, Ablinczy Z, Tomlinson S, Holers VM, Rohrer B (2009) Oxidative stress renders retinal pigment epithelial cells susceptible to complement-mediated injury. J Biol Chem 284(25):16939–16947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trouw LA, Daha MR (2011) Role of complement in innate immunity and host defence. Immunol Lett 138:35–37

    Article  CAS  PubMed  Google Scholar 

  • Uchiki T, Weikel KA, Jiao W, Shang F, Caceres A, Pawlak D, Handa JT, Brownlee M, Nagaraj R, Taylor A (2012) Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in non-diabetics). Aging Cell 11(1):1–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Tesler J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC, Brown MD, Melov S, Graham B, Lott M (1998) Mitochondrial biology, degenerative diseases and aging. Biofactors 7:187–190

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Anderson RE (1992) Enrichment of polyunsaturated fatty acids from rat retinal pigment epithelium to rod outer segments. Curr Eye Res 11:783–791

    Article  CAS  PubMed  Google Scholar 

  • West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, Podrez EA, Salomon RG, Byzova TV (2010) Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467(7318):972–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiktorowska-Owczarek A, Nowak JZ (2006) Oxidative damage in age-related macular degeneration (AMD) and antioxidant protection as a therapeutic strategy. Pol J Environ Stud 15:69–72

    Google Scholar 

  • Wu Y, Yanase E, Feng X, Siegel MM, Sparrow JR (2010) Structural characterization of bisretinoid A2E photocleavage products and implications for age-related macular degeneration. Proc Natl Acad Sci U S A 107:7275–7280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28(5):348–368

    Article  PubMed  Google Scholar 

  • Yu DY, Cringle SJ (2005) Retinal degeneration and local oxygen metabolism. Exp Eye Res 80(6):745–751

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Jang YP, Kim SR, Sparrow JR (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci U S A 103(44):16182–16187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Z. Nowak M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nowak, J.Z. (2015). Oxidative Stress and Polyunsaturated Lipid Peroxidation Products in the CNS: Focus on Retinal Bisretinoids and DHA-Derived Carboxyethylpyrroles as Potential Inducers of Vision-Threatening Pathology. In: Dietrich-Muszalska, A., Chauhan, V., Grignon, S. (eds) Studies on Psychiatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0440-2_24

Download citation

Publish with us

Policies and ethics