Skip to main content

Lipid Signaling in Retinal Pigment Epithelium Cells Exposed to Inflammatory and Oxidative Stress Conditions. Molecular Mechanisms Underlying Degenerative Retinal Diseases

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1185))

Abstract

The retinal pigment epithelium (RPE) is a monolayer of pigmented cells whose function is essential for the integrity of the retina and for visual function. Retinal diseases that eventually end in vision loss and blindness involve inflammation, oxidative stress (OS), and alterations in the RPE-photoreceptor cellular partnership. This chapter summarizes the role of lipid signaling pathways and lipidic molecules in RPE cells exposed to inflammatory and OS conditions. The modulation of these pathways in the RPE, through either enzyme inhibitors or receptor stimulation or blockage, could open new therapeutic strategies for retinal degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbaga MP (2016) Different mutations in ELOVL4 affect very long chain fatty acid biosynthesis to cause variable neurological disorders in humans. Adv Exp Med Biol 854:129–135

    Article  CAS  Google Scholar 

  • Anderson RE, O’Brien PJ, Wiegand RD et al (1992) Conservation of docosahexaenoic acid in the retina. Adv Exp Med Biol 318:285–294

    Article  CAS  Google Scholar 

  • Asatryan A, Bazan NG (2017) Molecular mechanisms of signaling via the docosanoid neuroprotectin D1 for cellular homeostasis and neuroprotection. J Biol Chem 292:12390–12397

    Article  CAS  Google Scholar 

  • Bazan NG (2006) Survival signaling in retinal pigment epithelial cells in response to oxidative stress: significance in retinal degenerations. Adv Exp Med Biol 572:531–540

    Article  CAS  Google Scholar 

  • Bazan NG (2007) Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture. Invest Ophthalmol Vis Sci 48:4866–4881

    Article  Google Scholar 

  • Bazan NG, Molina MF, Gordon WC (2011) Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 31:321–351

    Article  CAS  Google Scholar 

  • Bermúdez V, Tenconi PE, Giusto NM, Mateos MV (2019) Lipopolysaccharide-induced autophagy mediates retinal pigment epithelium cells survival. Modulation by the phospholipase D pathway. Front Cell Neurosci 13:154

    Google Scholar 

  • Bernstein PS, Tammur J, Singh N et al (2001) Diverse macular dystrophy phenotype caused by a novel complex mutation in the ELOVL4 gene. Invest Ophthalmol Vis Sci 42:3331–3336

    CAS  PubMed  Google Scholar 

  • Brindley DN, Pilquil C, Sariahmetoglu M et al (2009) Phosphatidate degradation: phosphatidate phosphatases (lipins) and lipid phosphate phosphatases. Biochim Biophys Acta 1791:956–961

    Article  CAS  Google Scholar 

  • Brown HA, Thomas PG, Lindsley CW (2017) Targeting phospholipase D in cancer, infection and neurodegenerative disorders. Nat Rev Drug Discov 16:351–367

    Article  CAS  Google Scholar 

  • Carr AJ, Vugler A, Lawrence J et al (2009) Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol Vis 15:283–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco S, Merida I (2007) Diacylglycerol, when simplicity becomes complex. Trends Biochem Sci 32:27–36

    Article  CAS  Google Scholar 

  • Frohman MA (2015) The phospholipase D superfamily as therapeutic targets. Trends Pharmacol Sci 36:137–144

    Article  CAS  Google Scholar 

  • Jun B, Mukherjee PK, Asatryan A et al (2017) Elovanoids are novel cell-specific lipid mediators necessary for neuroprotective signaling for photoreceptor cell integrity. Sci Rep 7:5279

    Article  Google Scholar 

  • Kauppinen A, Paterno JJ, Blasiak J et al (2016) Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 73:1765–1786

    Article  CAS  Google Scholar 

  • Kolko M, Wang J, Zhan C et al (2007) Identification of intracellular phospholipases A2 in the human eye: involvement in phagocytosis of photoreceptor outer segments. Invest Ophthalmol Vis Sci 48:1401–1409

    Article  Google Scholar 

  • Kolko M, Vohra R, Westlund van der Burght B et al (2014) Calcium-independent phospholipase A(2), group VIA, is critical for RPE cell survival. Mol Vis 20:511–521

    PubMed  PubMed Central  Google Scholar 

  • Lim SK, Park MJ, Lim JC et al (2012) Hyperglycemia induces apoptosis via CB1 activation through the decrease of FAAH 1 in retinal pigment epithelial cells. J Cell Physiol 227:569–577

    Article  CAS  Google Scholar 

  • Mateos MV, Kamerbeek CB, Giusto NM et al (2014) The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium. Int J Biochem Cell Biol 55:119–128

    Article  CAS  Google Scholar 

  • Maugeri A, Meire F, Hoyng CB et al (2004) A novel mutation in the ELOVL4 gene causes autosomal dominant Stargardt-like macular dystrophy. Invest Ophthalmol Vis Sci 45:4263–4267

    Article  Google Scholar 

  • Mechoulam R, Hanus LO, Pertwee R et al (2014) Early phytocannabinoid chemistry to endocannabinoids and beyond. Nat Rev Neurosci 15:757–764

    Article  CAS  Google Scholar 

  • Mukherjee PK, Marcheselli VL, Serhan CN et al (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101:8491–8496

    Article  CAS  Google Scholar 

  • Mukherjee PK, Marcheselli VL, de Rivero Vaccari JC et al (2007) Photoreceptor outer segment phagocytosis attenuates oxidative stress-induced apoptosis with concomitant neuroprotectin D1 synthesis. Proc Natl Acad Sci U S A 104:13158–13163

    Article  CAS  Google Scholar 

  • Newton AC (2010) Protein kinase C: poised to signal. Am J Physiol Endocrinol Metab 298:E395–E402

    Article  CAS  Google Scholar 

  • Peng X, Frohman MA (2012) Mammalian phospholipase D physiological and pathological roles. Acta Physiol (Oxf) 204:219–226

    Article  CAS  Google Scholar 

  • Perez VL, Caspi RR (2015) Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol 36:354–363

    Article  CAS  Google Scholar 

  • Rice DS, Calandria JM, Gordon WC et al (2015) Adiponectin receptor 1 conserves docosahexaenoic acid and promotes photoreceptor cell survival. Nat Commun 6:6228

    Article  CAS  Google Scholar 

  • Schwitzer T, Schwan R, Angioi-Duprez K et al (2016) The endocannabinoid system in the retina: from physiology to practical and therapeutic applications. Neural Plast 2016:2916732

    Article  Google Scholar 

  • Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  Google Scholar 

  • Strauss O (2016) Pharmacology of the retinal pigment epithelium, the interface between retina and body system. Eur J Pharmacol 787:84–93

    Article  CAS  Google Scholar 

  • Tallima H, El Ridi R (2018) Arachidonic acid: physiological roles and potential health benefits – a review. J Adv Res 11:33–41

    Article  CAS  Google Scholar 

  • Tang X, Benesch MG, Brindley DN (2015) Lipid phosphate phosphatases and their roles in mammalian physiology and pathology. J Lipid Res 56:2048–2060

    Article  CAS  Google Scholar 

  • Tenconi PE, Giusto NM, Salvador GA et al (2016) Phospholipase D1 modulates protein kinase C-epsilon in retinal pigment epithelium cells during inflammatory response. Int J Biochem Cell Biol 81:67–75

    Article  CAS  Google Scholar 

  • Vasquez AM, Mouchlis VD, Dennis EA (2018) Review of four major distinct types of human phospholipase A2. Adv Biol Regul 67:212–218

    Article  CAS  Google Scholar 

  • Wang QJ (2006) PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci 27:317–323

    Article  CAS  Google Scholar 

  • Wei Y, Wang X, Wang L (2009) Presence and regulation of cannabinoid receptors in human retinal pigment epithelial cells. Mol Vis 15:1243–1251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Wang X, Zhao F et al (2013) Cannabinoid receptor 1 blockade protects human retinal pigment epithelial cells from oxidative injury. Mol Vis 19:357–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9:162–176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melina V. Mateos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bermúdez, V., Tenconi, P.E., Giusto, N.M., Mateos, M.V. (2019). Lipid Signaling in Retinal Pigment Epithelium Cells Exposed to Inflammatory and Oxidative Stress Conditions. Molecular Mechanisms Underlying Degenerative Retinal Diseases. In: Bowes Rickman, C., Grimm, C., Anderson, R., Ash, J., LaVail, M., Hollyfield, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1185. Springer, Cham. https://doi.org/10.1007/978-3-030-27378-1_47

Download citation

Publish with us

Policies and ethics