Skip to main content

Oxidative Stress and Vascular Injury

  • Chapter
  • First Online:
Studies on Atherosclerosis

Abstract

Oxidative stress is responsible for aggravating vascular injury associated with atherosclerosis, chronic kidney disease (CKD), and end-stage renal disease (ESRD). The present chapter reviews the mechanisms responsible for oxidative stress contributing to vascular injury. We will discuss the role in hemodialysis vascular access failure, chronic kidney disease, and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tucker PS, Scanlan AT, Dalbo VJ. Chronic Kidney Disease Influences Multiple Systems: Describing the Relationship between Oxidative Stress, Inflammation, Kidney Damage, and Concomitant Disease. Oxid Med Cell Longev. 2015;2015:806358. doi:10.1155/2015/806358.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004;65(3):1009–16. doi:10.1111/j.1523-1755.2004.00465.x.

    Article  PubMed  Google Scholar 

  3. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62(5):1524–38. doi:10.1046/j.1523-1755.2002.00600.x.

    Article  CAS  PubMed  Google Scholar 

  4. Kokubo T, Ishikawa N, Uchida H, Chasnoff SE, Xie X, Mathew S, et al. CKD accelerates development of neointimal hyperplasia in arteriovenous fistulas. J Am Soc Nephrol. 2009;20(6):1236–45. doi:10.1681/asn.2007121312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang B, Vohra PK, Janardhanan R, Misra KD, Misra S. Expression of profibrotic genes in a murine remnant kidney model. J Vasc Interv Radiol. 2011;22 12, 1765–1772.e1761. doi:10.1016/j.jvir.2011.08.026

    Google Scholar 

  6. Lee T, Chauhan V, Krishnamoorthy M, Wang Y, Arend L, Mistry MJ, et al. Severe venous neointimal hyperplasia prior to dialysis access surgery. Nephrol Dial Transplant. 2011;26(7):2264–70. doi:10.1093/ndt/gfq733.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liang A, Wang Y, Han G, Truong L, Cheng J. Chronic kidney disease accelerates endothelial barrier dysfunction in a mouse model of an arteriovenous fistula. Am J Physiol Renal Physiol. 2013;304(12):F1413–20. doi:10.1152/ajprenal.00585.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cachofeiro V, Goicochea M, de Vinuesa SG, Oubina P, Lahera V, Luno J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl. 2008;111:S4–9. doi:10.1038/ki.2008.516.

    Article  CAS  Google Scholar 

  9. Puchades MJ, Saez G, Munoz MC, Gonzalez M, Torregrosa I, Juan I, et al. Study of oxidative stress in patients with advanced renal disease and undergoing either hemodialysis or peritoneal dialysis. Clin Nephrol. 2013;80(3):177–86. doi:10.5414/cn107639.

    Article  CAS  PubMed  Google Scholar 

  10. Ansarihadipour H, Dorostkar H. Comparison of plasma oxidative biomarkers and conformational modifications of hemoglobin in patients with diabetes on hemodialysis. Iran Red Crescent Med J. 2014;16(11), e22045. doi:10.5812/ircmj.22045.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tschopp J. Mitochondria: Sovereign of inflammation? Eur J Immunol. 2011;41(5):1196–202. doi:10.1002/eji.201141436.

    Article  CAS  PubMed  Google Scholar 

  12. Yazdi PG, Moradi H, Yang JY, Wang PH, Vaziri ND. Skeletal muscle mitochondrial depletion and dysfunction in chronic kidney disease. Int J Clin Exp Med. 2013;6(7):532–9.

    PubMed  PubMed Central  Google Scholar 

  13. Wasse H, Huang R, Naqvi N, Smith E, Wang D, Husain A. Inflammation, oxidation and venous neointimal hyperplasia precede vascular injury from AVF creation in CKD patients. J Vasc Access. 2012;13(2):168–74. doi:10.5301/jva.5000024.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dursun B, Dursun E, Suleymanlar G, Ozben B, Capraz I, Apaydin A, et al. Carotid artery intima-media thickness correlates with oxidative stress in chronic haemodialysis patients with accelerated atherosclerosis. Nephrol Dial Transplant. 2008;23(5):1697–703. doi:10.1093/ndt/gfm906.

    Article  PubMed  Google Scholar 

  15. Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the Transcription Factor Nrf2 to Ameliorate Oxidative Stress and Inflammation in Chronic Kidney Disease. Kidney Int. 2013;83(6):1029–41. doi:10.1038/ki.2012.439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Locatelli F, Canaud B, Eckardt KU, Stenvinkel P, Wanner C, Zoccali C. Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrol Dial Transplant. 2003;18(7):1272–80.

    Article  CAS  PubMed  Google Scholar 

  17. Granata S, Zaza G, Simone S, Villani G, Latorre D, Pontrelli P, et al. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics. 2009;10:388. doi:10.1186/1471-2164-10-388.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012;441(2):523–40. doi:10.1042/bj20111451.

    Article  CAS  PubMed  Google Scholar 

  19. Feldman HI, Joffe M, Rosas SE, Burns JE, Knauss J, Brayman K. Predictors of successful arteriovenous fistula maturation. Am J Kidney Dis. 2003;42(5):1000–12.

    Article  PubMed  Google Scholar 

  20. Huijbregts HJT, Bots ML, Wittens CHA, Schrama YC, Moll FL, Blankestijn PJ, et al. Hemodialysis arteriovenous fistula patency revisited: results of a prospective, multicenter initiative. Clin J Am Soc Nephrol. 2008;3(3):714–9. doi:10.2215/CJN.02950707.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gupta S, Gambhir JK, Kalra O, Gautam A, Shukla K, Mehndiratta M, et al. Association of biomarkers of inflammation and oxidative stress with the risk of chronic kidney disease in Type 2 diabetes mellitus in North Indian population. J Diabetes Complications. 2013;27(6):548–52. doi:10.1016/j.jdiacomp.2013.07.005.

    Article  CAS  PubMed  Google Scholar 

  22. Takeda R, Suzuki E, Satonaka H, Oba S, Nishimatsu H, Omata M, et al. Blockade of endogenous cytokines mitigates neointimal formation in obese Zucker rats. Circulation. 2005;111(11):1398–406. doi:10.1161/01.cir.0000158482.83179.db.

    Article  CAS  PubMed  Google Scholar 

  23. Vassalotti JA, Jennings WC, Beathard GA, Neumann M, Caponi S, Fox CH, et al. Fistula first breakthrough initiative: targeting catheter last in fistula first. Semin Dial. 2012;25(3):303–10. doi:10.1111/j.1525-139X.2012.01069.x.

    Article  PubMed  Google Scholar 

  24. Dixon BS. Why don’t fistulas mature? Kidney Int. 2006;70(8):1413–22. doi:10.1038/sj.ki.5001747.

  25. Sener EF, Taheri S, Korkmaz K, Zararsiz G, Serhatlioglu F, Unal A, et al. Association of TNF-alpha −308 G > A and ACE I/D gene polymorphisms in hemodialysis patients with arteriovenous fistula thrombosis. Int Urol Nephrol. 2014;46(7):1419–25. doi:10.1007/s11255-013-0580-2.

    Article  CAS  PubMed  Google Scholar 

  26. Guijarro C, Egido J. Transcription factor-kappa B (NF-kappa B) and renal disease. Kidney Int. 2001;59(2):415–24. doi:10.1046/j.1523-1755.2001.059002415.x.

    Article  CAS  PubMed  Google Scholar 

  27. Carbo C, Arderiu G, Escolar G, Fuste B, Cases A, Carrascal M, et al. Differential expression of proteins from cultured endothelial cells exposed to uremic versus normal serum. Am J Kidney Dis. 2008;51(4):603–12. doi:10.1053/j.ajkd.2007.11.029.

    Article  CAS  PubMed  Google Scholar 

  28. Martin-Rodriguez S, Caballo C, Gutierrez G, Vera M, Cruzado JM, Cases A, et al. TLR4 and NALP3 inflammasome in the development of endothelial dysfunction in uraemia. Eur J Clin Invest. 2015;45(2):160–9. doi:10.1111/eci.12392.

    Article  CAS  PubMed  Google Scholar 

  29. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32. doi:10.1016/j.cell.2010.01.040.

    Article  CAS  PubMed  Google Scholar 

  30. Misra S, Fu AA, Rajan DK, Juncos LA, McKusick MA, Bjarnason H, et al. Expression of hypoxia inducible factor-1 alpha, macrophage migration inhibition factor, matrix metalloproteinase-2 and −9, and their inhibitors in hemodialysis grafts and arteriovenous fistulas. J Vasc Interv Radiol. 2008;19(2 Pt 1):252–9. doi:10.1016/j.jvir.2007.10.031.

    Article  PubMed  Google Scholar 

  31. Asare Y, Schmitt M, Bernhagen J. The vascular biology of macrophage migration inhibitory factor (MIF). Expression and effects in inflammation, atherogenesis and angiogenesis. Thromb Haemost. 2013;109(3):391–8. doi:10.1160/th12-11-0831.

    Article  CAS  PubMed  Google Scholar 

  32. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29(6):313–26. doi:10.1089/jir.2008.0027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stracke S, Konner K, Köstlin I, Friedl R, Jehle PM, Hombach V, et al. Increased expression of TGF-beta1 and IGF-I in inflammatory stenotic lesions of hemodialysis fistulas. Kidney Int. 2002;61(3):1011–9. doi:10.1046/j.1523-1755.2002.00191.x.

    Article  CAS  PubMed  Google Scholar 

  34. Misra S, Shergill U, Yang B, Janardhanan R, Misra KD. Increased expression of HIF-1alpha, VEGF-A and its receptors, MMP-2, TIMP-1, and ADAMTS-1 at the venous stenosis of arteriovenous fistula in a mouse model with renal insufficiency. J Vasc Interv Radiol. 2010;21(8):1255–61. doi:10.1016/j.jvir.2010.02.043.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Misra S, Fu AA, Puggioni A, Glockner JF, Rajan DK, McKusick MA, et al. Increased expression of hypoxia-inducible factor-1 alpha in venous stenosis of arteriovenous polytetrafluoroethylene grafts in a chronic renal insufficiency porcine model. J Vasc Interv Radiol. 2008;19(2 Pt 1):260–5. doi:10.1016/j.jvir.2007.10.029.

    Article  PubMed  Google Scholar 

  36. Heine GH, Ulrich C, Sester U, Sester M, Kohler H, Girndt M. Transforming growth factor beta1 genotype polymorphisms determine AV fistula patency in hemodialysis patients. Kidney Int. 2003;64(3):1101–7. doi:10.1046/j.1523-1755.2003.00176.x.

    Article  CAS  PubMed  Google Scholar 

  37. Misra S, Fu AA, Puggioni A, Karimi KM, Mandrekar JN, Glockner JF, et al. Increased shear stress with upregulation of VEGF-A and its receptors and MMP-2, MMP-9, and TIMP-1 in venous stenosis of hemodialysis grafts. Am J Physiol Heart Circ Physiol. 2008;294(5):H2219–2230. doi:10.1152/ajpheart.00650.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu Y, Lawton MT, Du R, Shwe Y, Chen Y, Shen F, et al. Expression of hypoxia-inducible factor-1 and vascular endothelial growth factor in response to venous hypertension. Neurosurgery. 2006;59(3):687–96. doi:10.1227/01.neu.0000228962.68204.cf. discussion 687–696.

    Article  PubMed  Google Scholar 

  39. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32. doi:10.1038/nrc1187.

    Article  CAS  PubMed  Google Scholar 

  40. Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol. 2006;39(5):469–78.

    CAS  PubMed  Google Scholar 

  41. Huusko J, Merentie M, Dijkstra MH, Ryhänen MM, Karvinen H, Rissanen TT, et al. The effects of VEGF-R1 and VEGF-R2 ligands on angiogenic responses and left ventricular function in mice. Cardiovasc Res. 2010;86(1):122–30. doi:10.1093/cvr/cvp382.

    Article  CAS  PubMed  Google Scholar 

  42. Wan J, Lata C, Santilli A, Green D, Roy S, Santilli S. Supplemental Oxygen Reverses Hypoxia Induced Smooth Muscle Cell Proliferation by Modulating HIF-alpha and VEGF Levels in a Rabbit Arteriovenous Fistula Model. Ann Vasc Surg. 2014;28(3):725–36. doi:10.1016/j.avsg.2013.10.007.

    Article  PubMed  Google Scholar 

  43. Ohtani K, Egashira K, Hiasa K, Zhao Q, Kitamoto S, Ishibashi M, et al. Blockade of vascular endothelial growth factor suppresses experimental restenosis after intraluminal injury by inhibiting recruitment of monocyte lineage cells. Circulation. 2004;110(16):2444–52. doi:10.1161/01.cir.0000145123.85083.66.

    Article  CAS  PubMed  Google Scholar 

  44. Kang L, Grande JP, Farrugia G, Croatt AJ, Katusic ZS, Nath KA. Functioning of an arteriovenous fistula requires heme oxygenase-2. Am J Physiol Renal Physiol. 2013;305(4):F545–552. doi:10.1152/ajprenal.00234.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vempati P, Popel AS, Mac Gabhann F. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev. 2014;25(1):1–19. doi:10.1016/j.cytogfr.2013.11.002.

    Article  CAS  PubMed  Google Scholar 

  46. Kikuchi R, Nakamura K, MacLauchlan S, Ngo DT, Shimizu I, Fuster JJ. An antiangiogenic isoform of VEGF-A contributes to impaired vascularization in peripheral artery disease. Nat Med. 2014;20(12):1464–71. doi:10.1038/nm.3703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nowak DG, Woolard J, Amin EM, Konopatskaya O, Saleem MA, Churchill AJ, et al. Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci. 2008;121(Pt 20):3487–95. doi:10.1242/jcs.016410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Wang J. TGF-Beta suppresses VEGFA-mediated angiogenesis in colon cancer metastasis. PLoS One. 2013;8(3), e59918. doi:10.1371/journal.pone.0059918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakagawa T, Li JH, Garcia G, Mu W, Piek E, Böttinger EP, et al. TGF-beta induces proangiogenic and antiangiogenic factors via parallel but distinct Smad pathways. Kidney Int. 2004;66(2):605–13. doi:10.1111/j.1523-1755.2004.00780.x.

    Article  CAS  PubMed  Google Scholar 

  50. Shi X, Guo LW, Seedial SM, Si Y, Wang B, Takayama T, et al. TGF-β/Smad3 inhibit vascular smooth muscle cell apoptosis through an autocrine signaling mechanism involving VEGF-A. Cell Death Dis. 2014;5(7), e1317. doi:10.1038/cddis.2014.282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Candan F, Yildiz G, Kayatas M. Role of the VEGF 936 gene polymorphism and VEGF-A levels in the late-term arteriovenous fistula thrombosis in patients undergoing hemodialysis. Int Urol Nephrol. 2014;46(9):1815–23. doi:10.1007/s11255-014-0711-4.

    Article  CAS  PubMed  Google Scholar 

  52. Zhao YY, Takahashi M, Gu JG, Miyoshi E, Matsumoto A, Kitazume S, et al. Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci. 2008;99(7):1304–10. doi:10.1111/j.1349-7006.2008.00839.x.

    Article  CAS  PubMed  Google Scholar 

  53. Shen N, Lin H, Wu T, Wang D, Wang W, Xie H, et al. Inhibition of TGF-beta1-receptor posttranslational core fucosylation attenuates rat renal interstitial fibrosis. Kidney Int. 2013;84(1):64–77. doi:10.1038/ki.2013.82.

    Article  CAS  PubMed  Google Scholar 

  54. Simone S, Loverre A, Cariello M, Divella C, Castellano G, Gesualdo L, et al. Arteriovenous fistula stenosis in hemodialysis patients is characterized by an increased adventitial fibrosis. J Nephrol. 2014;27(5):555–62. doi:10.1007/s40620-014-0050-7.

    Article  CAS  PubMed  Google Scholar 

  55. Lata C, Green D, Wan J, Roy S, Santilli SM. The role of short-term oxygen administration in the prevention of intimal hyperplasia. J Vasc Surg. 2013;58(2):452–9. doi:10.1016/j.jvs.2012.11.041.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hinderliter A, Padilla RL, Gillespie BW, Levin NW, Kotanko P, Kiser M, et al. Association of carotid intima-media thickness with cardiovascular risk factors and patient outcomes in advanced chronic kidney disease: the RRI-CKD study. Clin Nephrol. 2015;84(7):10–20. doi:10.5414/cn108494.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shimizu M, Furusyo N, Mitsumoto F, Takayama K, Ura K, Hiramine S, et al. Subclinical carotid atherosclerosis and triglycerides predict the incidence of chronic kidney disease in the Japanese general population: results from the Kyushu and Okinawa Population Study (KOPS). Atherosclerosis. 2015;238(2):207–12. doi:10.1016/j.atherosclerosis.2014.12.013.

    Article  CAS  PubMed  Google Scholar 

  58. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108(17):2154–69. doi:10.1161/01.cir.0000095676.90936.80.

    Article  PubMed  Google Scholar 

  59. Culleton BF, Hemmelgarn BR. Is chronic kidney disease a cardiovascular disease risk factor? Semin Dial. 2003;16(2):95–100.

    Article  PubMed  Google Scholar 

  60. Vaziri ND. Lipotoxicity and impaired high density lipoprotein-mediated reverse cholesterol transport in chronic kidney disease. J Ren Nutr. 2010;20(5 Suppl):S35–43. doi:10.1053/j.jrn.2010.05.010.

    Article  CAS  PubMed  Google Scholar 

  61. Navab KD, Elboudwarej O, Gharif M, Yu J, Hama SY, Safarpour S, et al. Chronic inflammatory disorders and accelerated atherosclerosis: chronic kidney disease. Curr Pharm Des. 2011;17(1):17–20.

    Article  CAS  PubMed  Google Scholar 

  62. Szöcs K, Lassègue B, Sorescu D, Hilenski LL, Valppu L, Couse TL, et al. Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury. Arterioscler Thromb Vasc Biol. 2002;22(1):21–7.

    Article  PubMed  Google Scholar 

  63. Yokoyama M, Inoue N, Kawashima S. Role of the vascular NADH/NADPH oxidase system in atherosclerosis. Ann N Y Acad Sci. 2000;902:241–7. discussion 247–248.

    Article  CAS  PubMed  Google Scholar 

  64. Jacobson GM, Dourron HM, Liu J, Carretero OA, Reddy DJ, Andrzejewski T, et al. Novel NAD(P)H oxidase inhibitor suppresses angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery. Circ Res. 2003;92(6):637–43. doi:10.1161/01.res.0000063423.94645.8a.

    Article  CAS  PubMed  Google Scholar 

  65. Bondi CD, Manickam N, Lee DY, Block K, Gorin Y, Abboud HE, et al. NAD(P)H oxidase mediates TGF-β1–induced activation of kidney myofibroblasts. J Am Soc Nephrol. 2010;21(1):93–102. doi:10.1681/ASN.2009020146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cucoranu I, Clempus R, Dikalova A, Phelan PJ, Ariyan S, Dikalov S, et al. NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res. 2005;97(9):900–7. doi:10.1161/01.res.0000187457.24338.3d.

    Article  CAS  PubMed  Google Scholar 

  67. Rana I, Velkoska E, Patel SK, Burrell LM, Charchar FJ. MicroRNAs mediate the cardioprotective effect of angiotensin converting enzyme inhibition in acute kidney injury. Am J Physiol Renal Physiol. 2015;309(11):F943–54. doi:10.1152/ajprenal.00183.2015.

    CAS  PubMed  Google Scholar 

  68. Geiszt M. NADPH oxidases: new kids on the block. Cardiovasc Res. 2006;71(2):289–99. doi:10.1016/j.cardiores.2006.05.004.

    Article  CAS  PubMed  Google Scholar 

  69. Pawlak K, Brzosko S, Mysliwiec M, Pawlak D. Kynurenine, quinolinic acid the new factors linked to carotid atherosclerosis in patients with end-stage renal disease. Atherosclerosis. 2009;204(2):561–6. doi:10.1016/j.atherosclerosis.2008.10.002.

  70. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25(1):29–38. doi:10.1161/01.atv.0000150649.39934.13.

    CAS  PubMed  Google Scholar 

  71. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol. 2000;20(10):2175–83.

    Article  CAS  PubMed  Google Scholar 

  72. De Caterina R, Zampolli A. From asthma to atherosclerosis-5-lipoxygenase, leukotrienes, and inflammation. N Engl J Med. 2004;350(1):4–7. doi:10.1056/NEJMp038190.

  73. Crosslin DR, Shah SH, Nelson SC, Haynes CS, Connelly JJ, Gadson S, et al. Genetic effects in the leukotriene biosynthesis pathway and association with atherosclerosis. Hum Genet. 2009;125(2):217–29. doi:10.1007/s00439-008-0619-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang LX, Heng XH, Guo RW, Si YK, Qi F, Zhou XB. Atorvastatin inhibits the 5-lipoxygenase pathway and expression of CCL3 to alleviate atherosclerotic lesions in atherosclerotic ApoE knockout mice. J Cardiovasc Pharmacol. 2013;62(2):205–11. doi:10.1097/FJC.0b013e3182967fc0.

    Article  CAS  PubMed  Google Scholar 

  75. Back M. Inhibitors of the 5-lipoxygenase pathway in atherosclerosis. Curr Pharm Des. 2009;15(27):3116–32.

    Article  PubMed  Google Scholar 

  76. Kim JK, Jeong JH, Song YR, Kim HJ, Lee WY, Kim KI, et al. Obesity-related decrease in intraoperative blood flow is associated with maturation failure of radiocephalic arteriovenous fistula. J Vasc Surg. 2015. doi:10.1016/j.jvs.2015.05.008.

    PubMed Central  Google Scholar 

  77. Bai Y, Zhang J, Xu J, Cui L, Zhang H, Zhang S. Alteration of type I collagen in the radial artery of patients with end-stage renal disease. Am J Med Sci. 2015;349(4):292–7. doi:10.1097/maj.0000000000000408.

    Article  PubMed  Google Scholar 

  78. Rekhter MD, Zhang K, Narayanan AS, Phan S, Schork MA, Gordon D. Type I collagen gene expression in human atherosclerosis. Localization to specific plaque regions. Am J Pathol. 1993;143(6):1634–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Fassett RG, Robertson IK, Ball MJ, Geraghty DP, Coombes JS. Effects of atorvastatin on oxidative stress in chronic kidney disease. Nephrology (Carlton). 2015. doi:10.1111/nep.12502.

    Google Scholar 

  80. Kadowaki D, Anraku M, Sakaya M, Hirata S, Maruyama T, Otagiri M. Olmesartan protects endothelial cells against oxidative stress-mediated cellular injury. Clin Exp Nephrol. 2015. doi:10.1007/s10157-015-1111-5.

    PubMed  Google Scholar 

  81. Zhang L, Coombes J, Pascoe EM, Badve SV, Dalziel K, Cass A, et al. The effect of pentoxifylline on oxidative stress in chronic kidney disease patients with erythropoiesis-stimulating agent hyporesponsiveness: sub-study of the HERO trial. Redox Rep. 2015. doi:10.1179/1351000215y.0000000022.

    PubMed  Google Scholar 

  82. DuPont JJ, Ramick MG, Farquhar WB, Townsend RR, Edwards DG. NADPH oxidase-derived reactive oxygen species contribute to impaired cutaneous microvascular function in chronic kidney disease. Am J Physiol Renal Physiol. 2014;306(12):F1499–506. doi:10.1152/ajprenal.00058.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hruska KA, Mathew S, Memon I, Saab G. The pathogenesis of vascular calcification in the chronic kidney disease mineral bone disorder (CKD-MBD): the links between bone and the vasculature. Semin Nephrol. 2009;29(2):156–65. doi:10.1016/j.semnephrol.2009.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamanouchi D, Takei Y, Komori K. Balanced mineralization in the arterial system: possible role of osteoclastogenesis/osteoblastogenesis in abdominal aortic aneurysm and stenotic disease. Circ J. 2012;76(12):2732–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a HL098967 (SM) from the National Heart, Lung, And Blood Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Misra M.D., F.S.I.R. F.A.H.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brahmbhatt, A., Misra, S. (2017). Oxidative Stress and Vascular Injury. In: Rodriguez-Porcel, M., Chade, A., Miller, J. (eds) Studies on Atherosclerosis. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-4899-7693-2_3

Download citation

Publish with us

Policies and ethics