Skip to main content

Legumes in Omic Era: Retrospects and Prospects

  • Chapter
  • First Online:
Legumes in the Omic Era

Abstract

Legumes are important for nutritional security of humans and livestocks and ecological sustainability of agricultural production systems of the world. The adaptability and productivity of legumes are limited by major biotic and abiotic stresses. Therefore, there is a crucial need to increase tolerance against various stresses, which is a major challenge in legume improvement programs for enhancing yield. Breeding methods complemented adequately by genomics approaches could lead to simpler and more effective gene-based approach for legume improvement. This requires adequate genomic resources and information for each legume species of economic importance. Major developments made in recent past, like genome sequencing, the “omic” research and bioinformatics have provided scope for utilization of genomic resources for legume improvement. A good progress has been made in genome sequencing of some legumes and this will increase even more due to novel sequencing technologies called next generation sequencing. Since the release of genome sequences of Lotus japonicus, Glycine max, Medicago truncatula, Cajanus cajan and Cicer arietinum, a number of comprehensive tools such as bioinformatics tools for sequence assembly and functional annotation, microarray platforms for high-throughput gene expression, transformation systems, and large cDNA and gDNA libraries have been developed for important legumes. These tools need to be integrated to understand genome structure and function of legumes. More comprehensive approaches, including quantitative and qualitative analyses of gene expression products are further necessary at the transcriptomic, proteomic, and metabolomic levels for better understanding the functioning of genomes and their gene, including their regulatory networks by combining at computational approaches with translational genomics. The progress in omics research will considerably contribute to better understanding of the molecular and genetic basis of yield and tolerance to biotic and abiotic stress and accelerate molecular and transgenic breeding of legumes of economic importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asamizu E, Nakamura Y, Sato S, Tabata S (2004) Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. Plant Mol Biol 54:405–414

    Article  PubMed  Google Scholar 

  • Bell CJ, Dixon RA, Farmer AD, Flores R, Inman J, Gonzales RA, Harrison MJ, Paiva NL, Scott AD, Weller JW, May GD (2001) The Medicago Genome Initiative: a model legume database. Nucleic Acids Res 29:114–117

    Article  PubMed  CAS  Google Scholar 

  • Brautigam A, Gowik U (2010) What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research. Plant Biol (Stuttg) 12:831–841

    Article  CAS  Google Scholar 

  • Canovas F, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock HP, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298

    Article  PubMed  CAS  Google Scholar 

  • Castellana NE, Payne SH, Shen ZX, Stanke M et al (2008) Discovery and revision of Arabidopsis genes by proteogenomics. Proc Natl Acad Sci U S A 105:21034–21038

    Article  PubMed  CAS  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    Article  PubMed  CAS  Google Scholar 

  • Cook DR (1999) Medicago truncatula: a model in the making! Commentary. Curr Opin Plant Biol 2:301–304

    Article  PubMed  CAS  Google Scholar 

  • Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1–24. doi:10.1007/s10681-006-6156-9

    Article  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ (2001) Leguminosae. In: Brenner S, Miller JH (eds) Encyclopedia of Genetics. Academic, San Diego, pp 1081–1085

    Chapter  Google Scholar 

  • Dutt S, Singh VK, Marla SS, Kumar A (2010) In silico analysis of sequential, structural and functional diversity of wheat cystatins and its implication in plant defense. Genomics Proteomics Bioinformatics 8(1):42–56, PMID: 20451161

    Article  PubMed  CAS  Google Scholar 

  • Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25(1):39–48

    Article  PubMed  CAS  Google Scholar 

  • Gebhardt C, Bellin D, Henselewski H, Lehmann W et al (2006) Marker-assisted combination of major genes for pathogen resistance in potato. Theor Appl Genet 112:1458–1464

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang RL, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L ssp japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  • Handberg K, Stougaard J (1992) Lotus japonicus: an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496

    Article  Google Scholar 

  • He XZ, Dixon RA (2000) Genetic manipulation of isoflavone 7-Omethyltransferase enhances biosynthesis of 40-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12:1689–1702

    PubMed  CAS  Google Scholar 

  • Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Rao I, Wenzl P, Beebe S, Tohme J (2004) Integration of genomics approach with traditional breeding towards improving abiotic stress adaptation: drought and aluminum toxicity as case studies. Field Crop Res 90:35–45

    Article  Google Scholar 

  • Jorrin JV, Rubiales D, Dumas-Gaudot E, Recorbet G, Maldonado A, Castillejo MA, Curto M (2006) Proteomics: a promising approaches to study biotic interaction in legumes: a review. Euphytica 147:37–47

    Article  CAS  Google Scholar 

  • Kalo P, Seres A, Taylor SA, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis THN, Kiss GB (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Genet Genomics 272L:235–246

    Article  Google Scholar 

  • Kato T, Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (2003) Structural analysis of a Lotus japonicus genome V sequence features and mapping of sixty-four TAC clones which cover the 64 Mb regions of the genome. DNA Res 10:277–285

    Article  PubMed  CAS  Google Scholar 

  • Kav NNV, Srivastava S, Goonewardene L, Blade SF (2004) Proteome-level changes in the roots of Pisum sativum in response to salinity. Ann Appl Biol 145:217–230

    Article  CAS  Google Scholar 

  • Kim ST, Cho KS, Yu S, Kim SG, Hong JC, Han CD, Bae DW, Nam MH, Kang KY (2003) Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension cultured rice cells. Proteomics 3:2368–2378

    Article  PubMed  CAS  Google Scholar 

  • Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Franszn PF, Bisseling T (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58

    Article  PubMed  CAS  Google Scholar 

  • Kumari A, Singh VK, Fitter J, Polen T, Kayastha AM (2010) Alpha-amylase from germinating soybean (Glycine max) seeds-purification, characterization and sequential similarity of conserved and catalytic amino acid residues. Phytochemistry 71(14–15):1657–1666, PMID: 20655076

    Article  PubMed  CAS  Google Scholar 

  • Kushwaha H, Gupta S, Singh VK, Rastogi S, Yadav D (2011) Genome wide identification of D of transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis. Mol Biol Rep 38(8):5037–5053, PMID: 21161392

    Article  PubMed  CAS  Google Scholar 

  • Lamblin AFJ, Crow JA, Johnson JE et al (2003) MtDB: a database for personalized data mining of the model legume Medicago truncatula transcriptome. Nucleic Acids Res 31:196–201

    Article  PubMed  CAS  Google Scholar 

  • Lei Z, Elmer AM, Watson BS, Dixon RA, Mendes PJ, Sumner LW (2005) A two-dimensional electrophoresis proteomic reference map and systematic identification of 1367 protein from a cell suspension culture of the model legume Medicago truncatula. Mol Cell Proteomics 4:1812–1825

    Article  PubMed  CAS  Google Scholar 

  • Lin XY, Kaul SS, Rounsley S, Shea TP, Benito ML, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M et al (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761

    Article  PubMed  CAS  Google Scholar 

  • Mayer K, Schuller C, Wambutt R, Murphy G, Volckaert G, Pohl T, Dusterhoft A, Stiekema W, Entian KD, Terryn N et al (1999) Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402:769

    Article  PubMed  CAS  Google Scholar 

  • Moe KT, Chung JW, Cho Y, Moon JK, Ku JH, Jung JK, Lee J, Park YJ (2011) Sequence information on simple sequence repeats and single nucleotide polymorphisms through transcriptome analysis of mungbean. J Integr Plant Biol 53:67–73

    Article  Google Scholar 

  • Morgenthal K, Wienkoop S, Scholz M, Selbig J, Weckwerth W (2005) Correlative GC–TOF–MS based metabolite profiling and LC–MS based protein profiling reveal time-related systemic regulation of metabolite–protein networks and improve pattern recognition for multiple biomarker selection. Metabolomics 1:109–121

    Article  CAS  Google Scholar 

  • Ohtsu K, Smith MB, Emrich SJ, Borsuk LA, Zhou R, Chen T, Zhang X, Timmermans MCP, Beck J, Buckner B, Buckner DJ, Nettleton D, Scanlon MJ, Schnable PS (2007) Global gene expression analysis of the shoot apical meristem of maize (Zea mays L). Plant J 52:391–404

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd G (2005) Sequencing the model legume Medicago truncatula. Grain Legumes 41:23

    Google Scholar 

  • Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672

    PubMed  CAS  Google Scholar 

  • Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-Pearson V, Gianinazzi S (2003) Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae inoculated pea roots. New Phytol 157:555–567

    Article  CAS  Google Scholar 

  • Sansone SA, Fan T, Goodacre R, Griffin JL et al (2007) The metabolomics standards initiative. Nat Biotechnol 25:846–848

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    Article  PubMed  CAS  Google Scholar 

  • Scherling C, Roscher C, Giavalisco P, Schulze ED, Weckwerth W (2010) Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. PLoS One 5:e12569

    Article  PubMed  Google Scholar 

  • Schmutz J, Cannon S, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D, Song Q, Thelen J, Cheng J, Xu D, Hellsten U, May G, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M, Sandhu D et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Akurai T et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Shultz L, Kazi S, Bashir R, Afzal JA, Lightfoot DA (2007) The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor Appl Genet 114:1081–1090

    Article  PubMed  CAS  Google Scholar 

  • Singh BN, Mishra RN, Agarwal PK, Goswami M, Nair S, Sopory SK, Reddy MK (2004) A pea chloroplast translation elongation factor that is regulated by abiotic factors. Biochem Biophys Res Commun 320:523–530

    Article  PubMed  CAS  Google Scholar 

  • Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S, Bhutani S et al (2012) The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol 21(1):98–112

    Article  Google Scholar 

  • Somerville C, Dangl J (2000) Genomics. Plant biology in 2010. Science 290:2077–2078

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Sato S, Sandal N, Koyama M, Kaneko T, Tabata S, Parniske M (2004) Exploitation of colinear relationships between the genomes of Lotus japonicus, Pisum sativum and Arabidopsis thaliana, for positional cloning of a legume symbiosis gene. Theor Appl Genet 108:442–449

    Article  PubMed  CAS  Google Scholar 

  • Thompson R, Ratet P, Kuster H (2005) Identification of gene functions by applying TILLING and insertional mutagenesis strategies on microarray-based expression data. Grain Legumes 41:20–22

    Google Scholar 

  • Thoquet P, Gherardi M, Journet EP, Kereszt A, Ane JM, Prosperi JM, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2:1

    Article  PubMed  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M et al (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Graham PH, Allan DL (2000) Biological nitrogen fixation, phosphorus: a critical future need. In: Pedrosa FO, Hungria M, Yates MG, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer, Dordrecht, The Netherlands, pp 506–514

    Google Scholar 

  • Varshney RK, Glaszmann JC, Leung H, Ribaut JM (2010) More genomic resources for less-studied crops. Trends Biotechnol 28:452–460

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MTA, Azam S et al (2011) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    Article  PubMed  Google Scholar 

  • Wang L, Li P, Brutnell TP (2010) Exploring plant transcriptomes using ultra high-throughput sequencing. Brief Funct Genomics 9:118–128

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:69–89

    Article  Google Scholar 

  • Weckwerth W (2008) Integration of metabolomics and proteomics in molecular plant physiology—coping with the complexity by data-dimensionality reduction. Physiol Plant 132:176–189

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W (2011a) Green systems biology—from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteomics 75:285–305

    Article  Google Scholar 

  • Weckwerth W (2011b) Unpredictability of metabolism—the key role of metabolomics science in combination with next-generation genome sequencing. Anal Bioanal Chem 400:1967–1978

    Article  PubMed  CAS  Google Scholar 

  • Wienkoop S, Morgenthal K, Wolschin F, Scholz M et al (2008) Integration of metabolomic and proteomic phenotypes: analysis of data covariance dissects starch and RFO metabolism from low and high temperature compensation response in Arabidopsis thaliana. Mol Cell Proteomics 7:1725–1736

    Article  PubMed  CAS  Google Scholar 

  • Wienkoop S, Weiss J, May P, Kempa S et al (2010) Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. Mol Biosyst 6:1018–1031

    Article  PubMed  CAS  Google Scholar 

  • Wu QD, Van Etten HD (2004) Introduction of plant and fungal genes into pea (Pisum sativum L) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. Mol Plant Microbe Interact 17:798–804

    Article  PubMed  CAS  Google Scholar 

  • Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook DR, Meyers BC, Spannagl M, Cheung F, De Mita S, Krishnakumar V et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu SN, Wang J, Wong GKS, Li SG, Liu B, Deng YJ, Dai L, Zhou Y, Zhang XQ et al (2002) A draft sequence of the rice genome (Oryza sativa L ssp indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Gupta Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gupta, S., Nadarajan, N., Gupta, D.S. (2014). Legumes in Omic Era: Retrospects and Prospects. In: Gupta, S., Nadarajan, N., Gupta, D. (eds) Legumes in the Omic Era. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8370-0_1

Download citation

Publish with us

Policies and ethics