Skip to main content

Utilization of Agro-industrial Waste for the Production of Aroma Compounds and Fragrances

  • Chapter
  • First Online:
Biotransformation of Waste Biomass into High Value Biochemicals

Abstract

Agro-industrial wastes are unavoidable waste materials continuously generated in bulk quantity. Most of these materials can be used as nutrient source for industrial fermentation. However, commercial fermentation of low-value high-volume products generally suffer financial crisis. Alternatively, sustainable biotransformation of agro-industrial waste into fine biochemical, such as aroma compounds and fragrances, has been widely investigated. Significant variation of substrate quality imparts great variations in the production methodology of these processes. Further, a range of microorganisms are known to be used and different genetic engineering strategies have been applied for improved bioconversion. Moreover, novel strategies for detection, identification, and purification of the final products have been developed, and in some particular cases, successful commercialization has also been achieved. To have, however, further benefit from this potential strategy, a systematic study of the type and nature of the feedstock and their abundance should be evaluated. Similarly, presently used processes and their scale-up potential should be determined and different options for their economic competitiveness should be identified. The goal of this chapter, therefore, is to improve the basic understanding of the interesting strategy and to summarize the recent advancements in production of aroma compounds and fragrances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achmon Y, Goldshtein J, Margel S, Fishman A (2011) Hydrophobic microspheres for in situ removal of 2-phenylethanol from yeast fermentation. J Microencapsul 28(7):628–638. doi:10.3109/02652048.2011.599443

    Article  CAS  Google Scholar 

  • Alvandi H, Azar M (2008) Diacetyl production in batch fermentation process by lactic starter culture. Iran J Food Sci Technol 5(2):27–39

    Google Scholar 

  • Badcock M (2011) Sustainable recovery of pure natural vanillin from fermentation media in one step. http://blogs.rsc.org/gc/2011/08/01/sustainable-recovery-ofpure-natural-vanillin-from-fermentation-media-in-one-step/. Accessed on 30 Oct 2012

  • Barghini P, Di Gioia D, Fava F, Ruzzi M (2007) Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb Cell Fact 6(1):13

    Article  Google Scholar 

  • Bassit N, Boquien C-Y, Picque D, Corrieu G (1993) Effect of initial oxygen concentration on diacetyl and acetoin production by Lactococcus lactis subsp. lactis biovar diacetylactis. Appl Environ Microbiol 59(6):1893–1897

    CAS  Google Scholar 

  • Benson K, Godon J, Renault P, Griffin H, Gasson M (1996) Effect of < i > ilvBN -encoded α-acetolactate synthase expression on diacetyl production in Lactococcus lactis. Appl Microbiol Biotechnol 45(1):107–111. doi:10.1007/s00253005065

    Article  CAS  Google Scholar 

  • Bicas JL, Silva JC, Dionísio AP, Pastore GM (2010) Biotechnological production of bioflavors and functional sugars. Ciência e Tecnologia de Alimentos 30(1):07–18

    Article  Google Scholar 

  • Bloem A, Bertrand A, Lonvaud‐Funel A, De Revel G (2007) Vanillin production from simple phenols by wine‐associated lactic acid bacteria. Lett Appl Microbiol 44(1):62–67

    Article  CAS  Google Scholar 

  • Boumerdassi H, Monnet C, Desmazeaud M, Corrieu G (1997) Isolation and properties of Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 mutants producing diacetyl and acetoin from glucose. Appl Environ Microbiol 63(6):2293–2299

    CAS  Google Scholar 

  • Bramorski A, Christen P, Ramirez M, Soccol CR, Revah S (1998) Production of volatile compounds by the edible fungus Rhizopus oryzae during solid state cultivation on tropical agro-industrial substrates. Biotechnol Lett 20(4):359–362

    Article  CAS  Google Scholar 

  • Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Fact 9(1):84

    Article  Google Scholar 

  • Chapla D, Divecha J, Madamwar D, Shah A (2010) Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem Eng J 49(3):361–369. doi:10.1016/j.bej.2010.01.012

    Article  CAS  Google Scholar 

  • Christen P, Meza J, Revah S (1997) Fruity aroma production in solid state fermentation by Ceratocystis fimbriata: influence of the substrate type and the presence of precursors. Mycol Res 101(8):911–919

    Article  CAS  Google Scholar 

  • Davis L, Jeon YJ, Svenson C, Rogers P, Pearce J, Peiris P (2005) Evaluation of wheat stillage for ethanol production by recombinant Zymomonas mobilis. Biomass Bioenergy 29(1):49–59

    Article  CAS  Google Scholar 

  • Deiana P, Cecchi L, Lodi R, Berardi E, Farris G, Fatichenti F (1990) Some aspects of diacetyl and acetoin production by Debaryomyces hansenii. Ital J Food Sci 2(1):35–42

    Google Scholar 

  • Dastager SG (2009) Aroma compounds, biotechnology for agro-industrial residues utilisation. In: Pandey A, Nigam P (eds) Utilisation of Agro-Residues. Springer, Netherlands, pp 105–127. doi:10.1007/978-1-4020-9942-7_6

    Chapter  Google Scholar 

  • Duboff SA, Kwon SS, Vadehra DV (1996) Diacetyl production. EP Patent 0,564,770

    Google Scholar 

  • Eshkol N, Sendovski M, Bahalul M, Katz‐Ezov T, Kashi Y, Fishman A (2009) Production of 2‐phenylethanol from L‐phenylalanine by a stress tolerant Saccharomyces cerevisiae strain. J Appl Microbiol 106(2):534–542

    Article  CAS  Google Scholar 

  • Etschmann M, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol 59(1):1–8

    Article  CAS  Google Scholar 

  • Etschmann MMW, Sell D, Schrader J (2003) Screening of yeasts for the production of the aroma compound 2-phenylethanol in a molasses-based medium. Biotechnol Lett 25(7):531–536. doi:10.1023/a:1022890119847

    Article  CAS  Google Scholar 

  • Etschmann MMW, Sell D, Schrader J (2005) Production of 2-phenylethanol and 2-phenylethylacetate from L-phenylalanine by coupling whole-cell biocatalysis with organophilic pervaporation. Biotechnol Bioeng 92(5):624–634. doi:10.1002/bit.20655

    Article  CAS  Google Scholar 

  • Feron G, Bonnarme P, Durand A (1996) Prospects for the microbial production of food flavours. Trend Food Sci Technol 7(9):285–293. doi:10.1016/0924-2244(96)10032-7

    Article  CAS  Google Scholar 

  • Feron G, Waché Y (2006) Microbial biotechnology of food flavor production. Food Sci Technol 148:407, Marcel Dekker, New York

    CAS  Google Scholar 

  • Fornachon J, Lloyd B (2006) Bacterial production of diacetyl and actoin in wine. J Sci Food Agric 16(12):710–716

    Article  Google Scholar 

  • Fabre C, Blanc P, Goma G (1998) 2-Phenylethyl alcohol: an aroma profile. Perfumer flavorist 23(3):43–45

    CAS  Google Scholar 

  • Garc AI (1994) Modelling of diacetyl production during beer fermentation. J Inst Brew 100:179–183

    Article  Google Scholar 

  • Gonçalves FA, Sanjinez-Argandoña EJ, Fonseca GG (2011) Utilization of agro-industrial residues and municipal waste of plant origin for cellulosic ethanol production. J Environ Protect 2(10):1303–1309

    Article  Google Scholar 

  • Hua D, Ma C, Song L, Lin S, Zhang Z, Deng Z, Xu P (2007) Enhanced vanillin production from ferulic acid using adsorbent resin. Appl Microbiol Biotechnol 74(4):783–790. doi:10.1007/s00253-006-0735-5

    Article  CAS  Google Scholar 

  • Hua D, Lin S, Li Y, Chen H, Zhang Z, Du Y, Zhang X, Xu P (2010) Enhanced 2-phenylethanol production from L-phenylalanine via in situ product adsorption. Biocatal Biotransform 28(4):259–266. doi:10.3109/10242422.2010.500724

    Article  CAS  Google Scholar 

  • Hua D, Xu P (2011) Recent advances in biotechnological production of 2-phenylethanol. Biotechnol Adv 29(6):654–660. doi:10.1016/j.biotechadv.2011.05.001

    Article  CAS  Google Scholar 

  • Hugenholtz J, Kleerebezem M, Starrenburg M, Delcour J, De Vos W, Hols P (2000) Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol 66(9):4112–4114

    Article  CAS  Google Scholar 

  • Kaneko T, Watanabe Y, Suzuki H (1990a) Enhancement of diacetyl production by a diacetyl-resistant mutant of citrate-positive Lactococcus lactis ssp. lactis 3022 and by aerobic conditions of growth. J Dairy Sci 73(2):291–298. doi:10.3168/jds.S0022-0302(90)78672-9

    Article  CAS  Google Scholar 

  • Kaneko T, Takahashi M, Suzuki H (1990b) Acetoin fermentation by citrate-positive Lactococcus lactis subsp. lactis 3022 grown aerobically in the presence of hemin or Cu2+. Appl Environ Microbiol 56(9):2644–2649

    CAS  Google Scholar 

  • Koma D, Yamanaka H, Moriyoshi K, Ohmoto T, Sakai K (2012) Production of aromatic compounds by metabolically engineered Escherichia coli with shikimate pathway expansion. Appl Environ Microbiol 78:6203–6216. doi:10.1128/aem.01148-12

    Article  CAS  Google Scholar 

  • Krings U, Berger R (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8

    Article  CAS  Google Scholar 

  • Li YH, Sun ZH, Zhao LQ, Xu Y (2005) Bioconversion of isoeugenol into vanillin by crude enzyme extracted from soybean. Appl Biochem Biotechnol 125(1):1–10

    Article  CAS  Google Scholar 

  • Liu Y, Zhang S, Yong YC, Ji Z, Ma X, Xu Z, Chen S (2011) Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochem 46(1):390–394

    Article  CAS  Google Scholar 

  • Longo MA, Sanromán MA (2006) Production of food aroma compounds: microbial and enzymatic methodologies. Food Technol Biotechnol 44(3):335–353

    CAS  Google Scholar 

  • Mameeva O, Ostapchuk A, Podgorsky V (2010) The 2-phenylethanol and ethanol production by yeast Saccharomyces cerevisiae. http://www.nbuv.gov.ua/Portal/Chem_Biol/Mib/2010_1/2.pdf. Accessed on 17 Nov 2012

  • Medeiros ABP, Pandey A, Freitas RJS, Christen P, Soccol CR (2000) Optimization of the production of aroma compounds by Kluyveromyces marxianus in solid-state fermentation using factorial design and response surface methodology. Biochem Eng J 6(1):33–39. doi:10.1016/s1369-703x(00)00065-6

    Article  CAS  Google Scholar 

  • Monnet C, Schmilt P, Divies C (1994) Diacetyl production in milk by an α-acetolactic acid accumulating strain of Lactococcus lactis ssp. lactis biovar. diacetylactis. J Dairy Sci 77(10):2916–2924. doi:10.3168/jds.S0022-0302(94)77232-5

    Article  CAS  Google Scholar 

  • Nadal I, Rico J, Pérez-Martínez G, Yebra M, Monedero V (2009) Diacetyl and acetoin production from whey permeate using engineered Lactobacillus casei. J Ind Microbiol Biotechnol 36(9):1233–1237

    Article  CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT, Vandenberghe LPS, Mohan R (2000) Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresour Technol 74(1):81–87

    Article  CAS  Google Scholar 

  • Philippoussis AN (2009) Production of mushrooms using agro-industrial residues as substrates. Biotechnology for agro-industrial residues utilisation. Springer, Netherlands, pp 163–196

    Book  Google Scholar 

  • Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56(3):296–314. doi:10.1007/s002530100687

    Article  CAS  Google Scholar 

  • Quach AT, Liu C, Davies IY, Elston LD (2012) Toxicology report for Diacetyl. http://www.jakeheng.com/lulu.pdf. Accessed on 17 Nov 2012

  • Ramachandra Rao S, Ravishankar G (2000) Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 80:289–304

    Article  Google Scholar 

  • Rong S, Ding B, Zhang X, Zheng X, Wang Y (2011) Enhanced biotransformation of 2-phenylethanol with ethanol oxidation in a solid–liquid two-phase system by active dry yeast. Curr Microbiol 63(5):503–509. doi:10.1007/s00284-011-0008-0

    Article  CAS  Google Scholar 

  • Rossi S, Vandenberghe L, Pereira B, Gago F, Rizzolo J, Pandey A, Soccol C, Medeiros A (2009) Improving fruity aroma production by fungi in SSF using citric pulp. Food Res Int 42(4):484–486

    Article  CAS  Google Scholar 

  • Ruanglek V, Maneewatthana D, Tripetchkul S (2006) Evaluation of Thai agro-industrial wastes for bio-ethanol production by Zymomonas mobilis. Process Biochem 41(6):1432–1437

    Article  CAS  Google Scholar 

  • Sarangi PK, Nanda S, Sahoo H (2010) Maximization of vanillin production by standardizing different cultural conditions for ferulic acid degradation. NY Sci J 3(7):77–79

    Google Scholar 

  • Sasaki K, Noparatnaraporn N, Nagai S, Martin A (1991) Use of photosynthetic bacteria for the production of SCP and chemicals from agroindustrial wastes. Bioconversion of waste materials to industrial products. Elsevier, New York, NY, pp 225–264

    Google Scholar 

  • Savina JP, Kohler D, Brunerie P (1999) Method for extracting 2-phenylethanol. Google Patents

    Google Scholar 

  • Sendovski M, Nir N, Fishman A (2010) Bioproduction of 2-phenylethanol in a biphasic ionic liquid aqueous system. J Agric Food Chem 58(4):2260–2265. doi:10.1021/jf903879x

    Article  CAS  Google Scholar 

  • Serp D, von Stockar U, Marison IW (2003) Enhancement of 2-phenylethanol productivity by Saccharomyces cerevisiae in two-phase fed-batch fermentations using solvent immobilization. Biotechnol Bioeng 82(1):103–110. doi:10.1002/bit.1054

    Article  CAS  Google Scholar 

  • Sindhwani G, Ilyas U, Aeri V (2012) Microbial transformation of eugenol to vanillin. J Microbiol Biotechnol Res 2(2):313–318

    Google Scholar 

  • Soares M, Christen P, Pandey A, Soccol CR (2000) Fruity flavour production by Ceratocystis fimbriata grown on coffee husk in solid-state fermentation. Process Biochem 35(8):857–861

    Article  CAS  Google Scholar 

  • Sun J, Zhang L, Rao B, Han Y, Chu J, Zhu J, Shen Y, Wei D (2012) Enhanced acetoin production by Serratia marcescens H32 using statistical optimization and a two-stage agitation speed control strategy. Biotechnol Bioprocess Eng 17(3):598–605

    Article  CAS  Google Scholar 

  • Swindell SR, Benson KH, Griffin HG, Renault P, Ehrlich S, Gasson MJ (1996) Genetic manipulation of the pathway for diacetyl metabolism in Lactococcus lactis. Appl Environ Microbiol 62(7):2641–2643

    CAS  Google Scholar 

  • Teixeira R, Cavalheiro D, Ninow J, Furigo A Jr (2002) Optimization of acetoin production by Hanseniaspora guilliermondii using experimental design. Braz J Chem Eng 19(2):181–186

    Article  CAS  Google Scholar 

  • Wang H, Dong Q, Guan A, Meng C, Xa S, Guo Y (2011) Synergistic inhibition effect of 2-phenylethanol and ethanol on bioproduction of natural 2-phenylethanol by Saccharomyces cerevisiae and process enhancement. J Biosci Bioeng 112(1):26–31. doi:10.1016/j.jbiosc.2011.03.006

    Article  CAS  Google Scholar 

  • Wittmann C, Hans M, Bluemke W (2002) Metabolic physiology of aroma‐producing Kluyveromyces marxianus. Yeast 19(15):1351–1363

    Article  CAS  Google Scholar 

  • Xiao Z, Liu P, Qin JY, Xu P (2007) Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Appl Microbiol Biotechnol 74(1):61–68

    Article  CAS  Google Scholar 

  • Xu P, Hua D, Ma C (2007) Microbial transformation of propenylbenzenes for natural flavour production. Trends Biotechnol 25(12):571–576

    Article  CAS  Google Scholar 

  • Xu H, Jia S, Liu J (2011a) Production of acetoin by Bacillus subtilis TH-49. In: Consumer Electronics, Communications and Networks (CECNet), International Conference, 2011, IEEE, pp 1524–1527

    Google Scholar 

  • Xu H, Jia S, Liu J (2011b) Development of a mutant strain of Bacillus subtilis showing enhanced production of acetoin. Afr J Biotechnol 10(5):779–788

    CAS  Google Scholar 

  • Yiyong DUYZZZ, Hong C (2011) A new bioprocess to produce natural vanillin by microbial fermentation. Flavour Frag Cosmet 3:003

    Google Scholar 

  • Zhang Y, Li S, Liu L, Wu J (2012a) Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. Bioresource Technol 130:256–260. http://dx.doi.org/10.1016/j.biortech.2012.10.036

    Google Scholar 

  • Zhang L, Chen S, Xie H, Tian Y, Hu K (2012b) Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. J Chem Technol Biotechnol 87(11):1551–1557

    Article  CAS  Google Scholar 

  • Zheng L, Zheng P, Sun Z, Bai Y, Wang J, Guo X (2007) Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus. Bioresour Technol 98(5):1115–1119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are sincerely thankful to the Natural Sciences and Engineering Research Council of Canada (Discovery Grants 355254) and INRS-ETE for financial support. The views or opinions expressed in this article are those of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder Kaur Brar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sarma, S.J., Dhillon, G.S., Hegde, K., Brar, S.K., Verma, M. (2014). Utilization of Agro-industrial Waste for the Production of Aroma Compounds and Fragrances. In: Brar, S., Dhillon, G., Soccol, C. (eds) Biotransformation of Waste Biomass into High Value Biochemicals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8005-1_5

Download citation

Publish with us

Policies and ethics