Skip to main content
Log in

Diacetyl and acetoin production from whey permeate using engineered Lactobacillus casei

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The capability of Lactobacillus casei to produce the flavor-related compounds diacetyl and acetoin from whey permeate has been examined by a metabolic engineering approach. An L. casei strain in which the ilvBN genes from Lactococcus lactis, encoding acetohydroxyacid synthase, were expressed from the lactose operon was mutated in the lactate dehydrogenase gene (ldh) and in the pdhC gene, which codes for the E2 subunit of the pyruvate dehydrogenase complex. The introduction of these mutations resulted in an increased capacity to synthesize diacetyl/acetoin from lactose in whey permeate (1,400 mg/l at pH 5.5). The results showed that L. casei can be manipulated to synthesize added-value metabolites from dairy industry by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. de Vos WM, Hugenholtz J (2004) Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol 22:72–79

    Article  PubMed  Google Scholar 

  2. Gosalbes MJ, Esteban CD, Galán JL, Pérez-Martínez G (2000) Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 66:4822–4828

    Article  PubMed  CAS  Google Scholar 

  3. Henriksen CM, Nilsson D (2001) Redirection of pyruvate catabolism in Lactococcus lactis by selection of mutants with additional growth requirements. Appl Microbiol Biotechnol 56:767–775

    Article  PubMed  CAS  Google Scholar 

  4. Hugenholtz J, Kleerebezem M, Starrenburg M, Delcour J, de Vos W, Hols P (2000) Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol 66:4112–4114

    Article  PubMed  CAS  Google Scholar 

  5. Leloup L, Ehrlich SD, Zagorec M, Morel-Deville F (1997) Single-crossover integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes. Appl Environ Microbiol 63:2117–2123

    PubMed  CAS  Google Scholar 

  6. López de Felipe F, Kleerebezem M, de Vos WM, Hugenholtz J (1998) Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol 180:3804–3808

    PubMed  Google Scholar 

  7. Lorquet F, Goffin P, Muscariello L, Baudry JB, Ladero V, Sacco M, Kleerebezem M, Hols P (2004) Characterization and functional analysis of the poxB gene, which encodes pyruvate oxidase in Lactobacillus plantarum. J Bacteriol 186:3749–3759

    Article  PubMed  CAS  Google Scholar 

  8. Nissen L, Pérez-Martínez G, Yebra MJ (2005) Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon. FEMS Microbiol Lett 249:177–183

    Article  PubMed  CAS  Google Scholar 

  9. Platteeuw C, Hugenholtz J, Starrenburg M, van Alen-Boerrigter I, de Vos WM (1995) Metabolic engineering of Lactococcus lactis: influence of the overproduction of alpha-acetolactate synthase in strains deficient in lactate dehydrogenase as a function of culture conditions. Appl Environ Microbiol 61:3967–3971

    PubMed  CAS  Google Scholar 

  10. Rico J, Yebra MJ, Pérez-Martínez G, Deutscher J, Monedero V (2008) Analysis of ldh genes in Lactobacillus casei BL23: role on lactic acid production. J Ind Microbiol Biotechnol 35:579–586

    Article  PubMed  CAS  Google Scholar 

  11. Snoep JL, Teixeira de Mattos MJ, Starrenburg MJ, Hugenholtz J (1992) Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and alpha-acetolactate synthase of Lactococcus lactis subsp. lactis bv. diacetylactis. J Bacteriol 174:4838–4841

    PubMed  CAS  Google Scholar 

  12. Swindell SR, Benson KH, Griffin HG, Renault P, Ehrlich SD, Gasson MJ (1996) Genetic manipulation of the pathway for diacetyl metabolism in Lactococcus lactis. Appl Environ Microbiol 62:2641–2643

    PubMed  CAS  Google Scholar 

  13. Westerfeld WW (1945) A colorimetric determination of blood acetoin. J Biol Chem 161:495–502

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by project PET2005-0619 from the Spanish Ministerio de Ciencia e Innovación and by Corporación Alimentaria Peñasanta. J. Rico was recipient of a CSIC postgraduate fellowship partially funded by Corporación Alimentaria Peñasanta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Monedero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadal, I., Rico, J., Pérez-Martínez, G. et al. Diacetyl and acetoin production from whey permeate using engineered Lactobacillus casei . J Ind Microbiol Biotechnol 36, 1233–1237 (2009). https://doi.org/10.1007/s10295-009-0617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0617-9

Keywords

Navigation