Skip to main content

MR Imaging and the Biopsy of Prostate Cancer

  • Chapter
  • First Online:
Intraoperative Imaging and Image-Guided Therapy

Abstract

The latest on the role of MRI imaging in prostate cancer care is chiefly discussed along with a review of the latest on prostate cancer treatments and robotic assistant systems. Treatments for localized prostate cancer are either active surveillance or interventions such as either radical prostatectomy or whole-gland radiation. The side effects and morbidities of all prostate cancer treatments remain a very significant source of concern for men. The initial role of MRI in prostate cancer care is to confirm that cancer is confined to the gland and, now with multiparametric MRI (mpMRI) techniques including attenuation diffusion coefficient (ADC), to detect, localize, and characterize the index lesion. The MRI at time of diagnosis and prior to treatment selection can provide unique information regarding the tumor size, location, aggression, and stage and can be used to determine appropriateness of the patients for active surveillance and be used for patients on active surveillance as a monitor for disease along with serum PSA and serial biopsies. The state-of-the-art mpMRI protocol for cancer detection and characterization is outlined: in summary, it is to use the highest field strength available (1.5 T or greater) and T1, T2, DWI, and DCE sequences. The exact combination of sequences for specific clinical scenarios remains to be defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andriole GL, Crawford ED, Grubb 3rd RL, Buys SS, Chia D, Church TR, et al. Prostate cancer screening in the randomized prostate, lung, colorectal, and ovarian cancer screening trial: mortality results after 13 years of follow-up. J Natl Cancer Inst. 2012;104(2):125–32.

    Article  PubMed  Google Scholar 

  2. Schröder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360(13):1320–8.

    Article  PubMed  Google Scholar 

  3. The American Cancer Society (ACS) Website. Available at: http://www.cancer.org/Cancer/ProstateCancer/DetailedGuide/prostate-cancer-key-statistics. Accessed 7 June 2012.

  4. Barbiere JM, Greenberg DC, Wright KA, Brown CH, Palmer C, Neal DE, Lyratzopoulos G. The association of diagnosis in the private or NHS sector on prostate cancer stage and treatment. J Public Health (Oxf). 2012;34(1):108–14.

    Google Scholar 

  5. Norberg M, Egevad L, Holmberg L, Sparen P, Norlen BJ, Busch C. The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology. 1997;50(4):562–6.

    Article  CAS  PubMed  Google Scholar 

  6. Rabbani F, Stroumbakis N, Kava BR, Cookson MS, Fair WR. Incidence and clinical significance of false-negative sextant biopsies of the prostate. Urologe A. 1998;37(6):660.

    Article  CAS  PubMed  Google Scholar 

  7. Roehl KA, Antenor JA, Catalona WJ. Robustness of free prostate specific antigen measurements to reduce unnecessary biopsies in the 2.6 To 4.0 ng/ml range. J Urol. 2002;168(3):922–5.

    Article  PubMed  Google Scholar 

  8. Terris MK, Wallen EM, Stamey TA. Comparison of mid-lobe versus lateral systematic sextant biopsies in the detection of prostate cancer. Urol Int. 1997;59(4):239–42.

    Article  CAS  PubMed  Google Scholar 

  9. Wefer AE, Hricak H, Vigneron DB, Coakley FV, Lu Y, Wefer J, et al. Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol. 2000;164(2):400–4.

    Article  CAS  PubMed  Google Scholar 

  10. Halpern EJ, Ramey JR, Strup SE, Frauscher F, McCue P, Gomella LG. Detection of prostate carcinoma with contrast-enhanced sonography using intermittent harmonic imaging. Cancer. 2005;104(11):2373–83.

    Article  PubMed  Google Scholar 

  11. Kelloff GJ, Choyke P, Coffey DS. Challenges in clinical prostate cancer: role of imaging. AJR Am J Roentgenol. 2009;192(6):1455–70.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Mitterberger M, Pinggera GM, Horninger W, Bartsch G, Strasser H, Schafer G, et al. Comparison of contrast enhanced color Doppler targeted biopsy to conventional systematic biopsy: impact on Gleason score. J Urol. 2007;178(2):464–8; discussion 468.

    Article  CAS  PubMed  Google Scholar 

  13. Anastasiadis AG, Lichy MP, Nagele U, Kuczyk MA, Merseburger AS, Hennenlotter J, et al. MRI-guided biopsy of the prostate increases diagnostic performance in men with elevated or increasing PSA levels after previous negative TRUS biopsies. Eur Urol. 2006;50(4):738–48; discussion 748–9.

    Article  CAS  PubMed  Google Scholar 

  14. Beyersdorff D, Winkel A, Hamm B, Lenk S, Loening SA, Taupitz M. MR imaging guided prostate biopsy with a closed MR unit at 1.5 T: initial results. Radiology. 2005;234(2):576–81.

    Article  PubMed  Google Scholar 

  15. D'Amico A, Cormack R, Kumar S, Tempany CM. Real-time magnetic resonance imaging-guided brachytherapy in the treatment of selected patients with clinically localized prostate cancer. J Endourol. 2000;14(4):367–70.

    Article  PubMed  Google Scholar 

  16. D'Amico AV, Cormack RA, Tempany CM. MRI-guided diagnosis and treatment of prostate cancer. N Engl J Med. 2001;344(10):776–7.

    Article  PubMed  Google Scholar 

  17. Engelhard K, Hollenbach HP, Kiefer B, Winkel A, Goeb K, Engehausen D. Prostate biopsy in the supine position in a standard 1.5-T scanner under real time MR imaging control using a MR-compatible endorectal biopsy device. Eur Radiol. 2006;16(6):1237–43.

    Article  CAS  PubMed  Google Scholar 

  18. Fichtinger G, DeWeese TL, Patriciu A, Tanacs A, Mazilu D, Anderson JH, et al. System for robotically assisted prostate biopsy and therapy with intraoperative CT guidance. Acad Radiol. 2002;9(1):60–74.

    Article  PubMed  Google Scholar 

  19. Hambrock T, Futterer JJ, Huisman HJ, Hulsbergen-van de Kaa C, van Basten JP, van Oort I, et al. Thirty-two-channel coil 3T magnetic resonance-guided biopsies of prostate tumor suspicious regions identified on multimodality 3T magnetic resonance imaging: technique and feasibility. Invest Radiol. 2008;43(10):686–94.

    Article  PubMed  Google Scholar 

  20. Hambrock T, Somford DM, Hoeks C, Bouwense SA, Huisman H, Yakar D, et al. Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J Urol. 2010;183(2):520–7.

    Article  CAS  PubMed  Google Scholar 

  21. Hata N, Jinzaki M, Kacher D, Cormak R, Gering D, Nabavi A, Silverman SG, D'Amico AV, Kikinis R, Jolesz FA, Tempany CM. MR imaging-guided prostate biopsy with surgical navigation software: device validation and feasibility. Radiology. 2001;220(1):263–8.

    Article  CAS  PubMed  Google Scholar 

  22. Pondman KM, Futterer JJ, ten Haken B, Schultze Kool LJ, Witjes JA, Hambrock T, Macura KJ, Barentsz JO. MR-guided biopsy of the prostate: an overview of techniques and a systematic review. Eur Urol. 2008;54(3):517–27.

    Article  PubMed  Google Scholar 

  23. Susil RC, Camphausen K, Choyke P, McVeigh ER, Gustafson GS, Ning H, Miller RW, Atalar E, Coleman CN, Menard C. System for prostate brachytherapy and biopsy in a standard 1.5 T MRI scanner. Magn Reson Med. 2004;52(3):683–7.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Susil RC, Menard C, Krieger A, Coleman JA, Camphausen K, Choyke P, Fichtinger G, Whitcomb LL, Coleman CN, Atalar E. Transrectal prostate biopsy and fiducial marker placement in a standard 1.5T magnetic resonance imaging scanner. J Urol. 2006;175(1):113–20.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Tempany C, Straus S, Hata N, Haker S. MR-guided prostate interventions. J Magn Reson Imaging. 2008;27(2):356–67.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Zangos S, Eichler K, Engelmann K, Ahmed M, Dettmer S, Herzog C, Pegios W, Wetter A, Lehnert T, Mack MG, Vogl TJ. MR-guided transgluteal biopsies with an open low-field system in patients with clinically suspected prostate cancer: technique and preliminary results. Eur Radiol. 2005;15(1):174–82.

    Article  PubMed  Google Scholar 

  27. Klotz L, Thompson I. Early prostate cancer – treat or watch? N Engl J Med. 2011;365(6):569.

    Article  CAS  PubMed  Google Scholar 

  28. Hricak H, Choyke PL, Eberhardt SC, Leibel SA, Scardino PT. Imaging prostate cancer: a multidisciplinary perspective. Radiology. 2007;243:28–53.

    Article  PubMed  Google Scholar 

  29. Langer DL, van der Kwast TH, Evans AJ, Plotkin A, Trachtenberg J, Wilson BC. Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology. 2010;255:485–94.

    Article  PubMed  Google Scholar 

  30. Oto A, Kayhan A, Jiang Y, Tretiakova M, Yang C, Antic T. Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology. 2010;257:715–23.

    Article  PubMed  Google Scholar 

  31. Arumainayagam N, Kumaar S, Ahmed HU, Moore CM, Payne H, Freeman A. Accuracy of multiparametric magnetic resonance imaging in detecting recurrent prostate cancer after radiotherapy. BJU Int. 2010;106:991–7.

    Article  PubMed  Google Scholar 

  32. Wang L, Hricak H, Kattan MW, Chen HN, Kuroiwa K, Eisenberg HF. Prediction of seminal vesicle invasion in prostate cancer: incremental value of adding endorectal MR imaging to the Kattan nomogram. Radiology. 2007;242:182–8.

    Article  PubMed  Google Scholar 

  33. Yoshimitsu K, Kiyoshima K, Irie H, Tajima T, Asayama Y, Hirakawa M, Ishigami K, Naito S, Honda H. Usefulness of apparent diffusion coefficient map in diagnosing prostate carcinoma: correlation with stepwise histopathology. J Magn Reson Imaging. 2008;27:132–9.

    Article  PubMed  Google Scholar 

  34. Zelhof B, Pickles M, Liney G, Gibbs P, Rodrigues G, Kraus S, Turnbull L. Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJU Int. 2009;103:883–8.

    Article  PubMed  Google Scholar 

  35. Woodfield CA, Tung GA, Grand DJ, Pezzullo JA, Machan JT, Renzulli 2nd JF. Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. AJR Am J Roentgenol. 2010;194:W316–22.

    Article  PubMed  Google Scholar 

  36. Gibbs P, Liney GP, Pickles MD, Zelhof B, Rodrigues G, Turnbull LW. Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Invest Radiol. 2009;44:572–6.

    Article  PubMed  Google Scholar 

  37. Itou Y, Nakanishi K, Narumi Y, Nishizawa Y, Tsukuma H. Clinical utility of apparent diffusion coefficient (ADC) values in patients with prostate cancer: can ADC values contribute to assess the aggressiveness of prostate cancer? J Magn Reson Imaging. 2011;33:167–72.

    Article  PubMed  Google Scholar 

  38. Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, McKinney YL. Prostate cancer: value of multiparametric MR imaging at 3 T for detection-histopathologic correlation. Radiology. 2010;255:89–99.

    Article  PubMed  Google Scholar 

  39. Turkbey B, Shah VP, Pang Y, Bernardo M, Xu S, Kruecker J. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology. 2011;258:488–95.

    Article  PubMed  Google Scholar 

  40. Mullerad M, Hricak H, Kuroiwa K, Pucar D, Chen HN, Kattan MW. Comparison of endorectal magnetic resonance imaging, guided prostate biopsy and digital rectal examination in the preoperative anatomical localization of prostate cancer. J Urol. 2005;174:2158–63.

    Article  PubMed  Google Scholar 

  41. Kumar V, Jagannathan NR, Kumar R, Nayyar R, Thulkar S, Gupta SD, et al. Potential of 1H MR spectroscopic imaging to segregate patients who are likely to show malignancy of the peripheral zone of the prostate on biopsy. J Magn Reson Imaging. 2009;30(4):842–8.

    Article  PubMed  Google Scholar 

  42. Weinreb JC, Blume JD, Coakley FV, Wheeler TM, Cormack JB, Sotto CK. Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy-results of ACRIN prospective multi-institutional clinicopathologic study. Radiology. 2009;251:122–33.

    Article  PubMed  Google Scholar 

  43. Dickinson L, Ahmed HU, Allen C, Barentsz JO, Carey B, Futterer JJ, et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol. 2011;59(4):477–94.

    Article  PubMed  Google Scholar 

  44. Futterer JJ. MR imaging in local staging of prostate cancer. Eur J Radiol. 2007;63:328–34.

    Article  PubMed  Google Scholar 

  45. Cormack RA, D'Amico AV, Hata N, Silverman S, Weinstein M, Tempany CM. Feasibility of transperineal prostate biopsy under interventional magnetic resonance guidance. Urology. 2000;56:663–4.

    Article  CAS  PubMed  Google Scholar 

  46. D'Amico AV, Tempany CM, Cormack R, Hata N, Jinzaki M, Tuncali K, et al. Transperineal magnetic resonance image guided prostate biopsy. J Urol. 2000;164:385–7.

    Article  PubMed  Google Scholar 

  47. Hirose M, Bharatha A, Hata N, Zou KH, Warfield SK, Cormack RA, et al. Quantitative MRI imaging assessment of prostate gland deformation before and during MRI imaging-guided brachytherapy. Acad Radiol. 2002;9(8):906–12.

    Article  PubMed  Google Scholar 

  48. Bharatha A, Hirose M, Hata N, Warfield SK, Ferrant M, Zou KH, et al. Evaluation of three-dimensional finite element-based deformable registration of pre- and intraoperative prostate imaging. Med Phys. 2001;28:2551–60.

    Article  CAS  PubMed  Google Scholar 

  49. Seppenwoolde JH, Viergever MA, Bakker CJ. Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn Reson Med. 2003;50(4):784–90.

    Article  PubMed  Google Scholar 

  50. van der Weide R, Bakker CJ, Viergever MA. Localization of intravascular devices with paramagnetic markers in MR images. IEEE Trans Med Imaging. 2001;20(10):1061–71.

    Article  PubMed  Google Scholar 

  51. DiMaio SP, Pieper S, Chinzei K, Hata N, Haker SJ, Kacher DF, et al. Robot-assisted needle placement in open MRI: system architecture, integration and validation. Comput Aided Surg. 2007;12(1):15–24.

    CAS  PubMed  Google Scholar 

  52. Song SE, Cho NB, Iordachita II, Guion P, Fichtinger G, Whitcomb LL. A study of needle image artifact localization in confirmation imaging of MRI-guided robotic prostate biopsy. IEEE Int Conf Robot Autom. 2011;2011:4834–9.

    PubMed Central  PubMed  Google Scholar 

  53. Song S, Cho N, Iordachita I, Guion P, Fichtinger G, Kaushal A, et al. Biopsy needle artifact localization in MRI-guided robotic transrectal prostate intervention. IEEE Trans Biomed Eng. 2012;59(7):1902–11.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Blumenfeld P, Hata N, DiMaio S, Zou K, Haker S, Fichtinger G, Tempany C. MR-guided transperineal biopsy: needle placement accuracy study. J Magn Reson Imaging. 2007;26(3):688–94.

    Article  PubMed  Google Scholar 

  55. Xu S, Kruecker J, Turkbey B, Glossop N, Singh AK, Choyke P, et al. Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput Aided Surg. 2008;13:255–64.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Turkbey B, Xu S, Kruecker J, Locklin J, Pang Y, Bernardo M, et al. Documenting the location of prostate biopsies with image fusion. BJU Int. 2011;107(1):53–7.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Ukimura O, Hirahara N, Fujihara A, Yamada T, Iwata T, Kamoi K, et al. Technique for a hybrid system of real-time transrectal ultrasound with preoperative magnetic resonance imaging in the guidance of targeted prostate biopsy. J Urol. 2010;17(10):890–3.

    Google Scholar 

  58. Chinzei K, Hata N, Jolesz FA, Kikinis R. MRI compatible surgical assist robot: system integration and preliminary feasibility study. In: Lecture notes in computer science, Proc MICCAI, vol. 1935. Pittsburgh: Springer; 2000. p. 921–30.

    Google Scholar 

  59. Tsekos NV, Khanicheh A, Christoforou E, Mavroidis C. Magnetic resonance compatible robotic and mechatronics systems for image-guided interventions and rehabilitation. Annu Rev Biomed Eng. 2007;9:351–87.

    Article  CAS  PubMed  Google Scholar 

  60. Elhawary H, Zivanovic A, Davies B, Lamprth M. A review of magnetic resonance imaging compatible manipulators in surgery. Proc Inst Mech Eng H. 2006;220:413–24.

    Article  CAS  PubMed  Google Scholar 

  61. Kaiser WA, Fischer H, Vagner J, Selig M. Robotic system for biopsy and therapy of breast lesions in a high-field whole-body magnetic resonance tomography unit. Invest Radiol. 2000;35(8):513–9.

    Article  CAS  PubMed  Google Scholar 

  62. Krieger A, Iordachita I, Guion P, Singh AK, Kaushal A, Menard C, Pinto PA, Camphausen K, Fichtinger G, Whitcomb LL. An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention. IEEE Trans Biomed Eng. 2011;58(11):3049–60.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Hushek S, Fetics B, Moser R. Initial clinical experience with a passive electromagnetic 3D locator system. In: Proceedings of the 5th interventional MRI symposium. Boston; 15–16 Oct 2004.

    Google Scholar 

  64. Dumoulin CL, Souza SP, Darrow RD. Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med. 1993;29(3):411–5.

    Article  CAS  PubMed  Google Scholar 

  65. Krieger A, Susil RC, Menard C, Coleman JA, Fichtinger G, Atalar E, Whitcomb LL. Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans Biomed Eng. 2005;52(2):306–13.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Hata N, Tokuda J, Morikawa S, Dohi T. Projection profile matching for intraoperative MRI registration embedded in MR imaging sequence. Med Image Comput Comput Assist Interv. 2002;2002:164–9.

    Google Scholar 

  67. Tadayyon H, Lasso A, Gill S, Kaushal A, Guion P, Fichtinger G. Target motion tracking in MRI-guided transrectal robotic prostate biopsy. IEEE Trans Biomed Eng. 2011;58(11):3135–42.

    Article  PubMed  Google Scholar 

  68. Ménard C, Susil RC, Choyke P, Coleman J, Grubb R, Gharib A, et al. An interventional magnetic resonance imaging technique for the molecular characterization of intraprostatic dynamic contrast enhancement. Mol Imaging. 2005;4(1):63–6.

    PubMed Central  PubMed  Google Scholar 

  69. Singh AK, Guion P, Sears Crouse N, Ullman K, Smith S, et al. Simultaneous integrated boost of biopsy proven MRI defined dominant intra-prostatic lesions to 95 gray with IMRT: early results of a phase I NCI study. Radiat Oncol. 2007;18:2(1).

    Google Scholar 

  70. Singh AK, Krieger A, Lattouf JB, Guion P, Grubb III RL, Albert PS, et al. Patient selection appears to determine prostate cancer yield of dynamic contrast enhanced MRI guided transrectal biopsies in a closed 3 Tesla scanner. Br J Urol. 2007;101(2):181–5.

    Google Scholar 

  71. Wallner K, Dattoli MJ, Blasko J. Prostate brachytherapy made complicated, vol. 131. Seattle: Smart Press; 1997.

    Google Scholar 

  72. Fischer G, Iordachita I, Csoma C, Tokuda J, DiMaio SP, Tempany CM, Hata N, Fichtinger G. MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE/ASME Trans Mechatron. 2008;13(3):3295–305.

    Article  Google Scholar 

  73. Seifabadi R, Song SE, Krieger A, Fichtinger G, Iordachita I. Robotic system for MRI-guided prostate biopsy: feasibility of teleoperated needle insertion and ex vivo phantom study. Int J Comput Assist Radiol Surg. 2012;7:181–90.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Tadakuma K, DeVita LM, Dubowsky SY, Dubowsky S. The experimental study of a precision parallel manipulator with binary actuation: with application to MRI cancer treatment. In: Proceeding of IEEE international conference on robotics and automation ICRA. Pasadena; 2008. p. 2503–8.

    Google Scholar 

  75. Stoianovici D, Song D, Petrisor D, Ursu D, Mazilu D, Muntener M, Mutener M, Schar M, Patriciu A. MRI stealth robot for prostate interventions. Minim Invasive Ther Allied Technol. 2007;16:241–8.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Goldenberg AA, Trachtenberg J, Kucharczyk W, Yi Y, Haider M, Ma L, Weersink R, Raoufi C. Robotic system for closed-bore MRI-guided prostatic interventions. IEEE/ASME Trans Mechatron. 2008;13:374–9.

    Article  Google Scholar 

  77. Van den Bosch MR, Moman MR, V Vulpen M, Battermann JJ, Duiveman E, V Schelven LJ, D. Leeuw H, Lagendijk JJW, Moerland MA. MRI-guided robotic system for transperineal prostate interventions: proof of principle. Phys Med Biol. 2010;55(5):N133–40.

    Article  PubMed  Google Scholar 

  78. Zangos S, Melzer A, Eichler K, Sadighi C, Thalhammer A, Bodelle B, et al. MR-compatible assistance system for biopsy in a high-field-strength system: initial results in patients with suspicious prostate lesions. Radiology. 2011;259(3):903–10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare M. C. Tempany MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tempany, C.M.C., Fichtinger, G. (2014). MR Imaging and the Biopsy of Prostate Cancer. In: Jolesz, F. (eds) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7657-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7657-3_56

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7656-6

  • Online ISBN: 978-1-4614-7657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics