Skip to main content

Review: Pre-treatments and Fermentation of Seaweed for Bioethanol Production

  • Chapter
  • First Online:
Developments in Sustainable Chemical and Bioprocess Technology

Abstract

This article reviews the current studies on the production of bioethanol from seaweed with a focus on the process pre-treatments and variety of microorganisms used in the process. Pre-treatment selection is essential to maximize the amount of reduced sugar for the fermentation to produce bioethanol. Specific microbial strains are matched to their ability to utilize sugar sources. Some studies focus mainly on general processing with variable microbial strains to gauge their abilities in fermentation. A summary of the current studies was carried out, and it is evident that two or more yield increasing techniques can coexist within a single process. The integration of the findings may be the key to make seaweed fermentation more efficient and affordable to serve as a sustainable and renewable energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, J. M., Gallagher, J. A., & Donnison, I. A. (2009). Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. Journal of applied Phycology, 21, 569–574.

    Article  CAS  Google Scholar 

  • Buck, B. H., & Buchholz, C. M. (2004). The offshore-ring: A new system design for the open ocean aquaculture of macroalgae. Journal of Applied Phycology, 16, 355–368.

    Article  Google Scholar 

  • Candra, K. P., Sarwono, Sarinah. (2011). Study on bioethanol production using red seaweed Eucheuma cottonii from Bontang sea water. Journal of Coastal Development 15(1), 45–50.

    Google Scholar 

  • Ge, L., Wang, P., & Mou, H. (2011). Study of saccharification techniques of seaweed wastes for the transformation of ethanol. Journal of Renewable Energy, 36, 84–89.

    Article  CAS  Google Scholar 

  • Goh, C. S., & Lee, K. T. (2009). A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renewable Sustainable Energy Revolution, 14, 842–848.

    Article  Google Scholar 

  • Huimin, Q. I., Daxin, L. I., Zhang, J. J., Liu, L., & Zhang, Q. B. (2007). Study on extraction of agaropectin from Gelidium amansii and its anticoagulant activity. Chinese Journal of Oceanology and Limnology, 26(2), 186–189.

    Google Scholar 

  • Istini, S., Ohno, M., & Kusunose, H. (1994). Methods of analysis agar, carrageenan and alginate in seaweed. Bulletin of Marine Science and Fisheries—Kochi University, 14, 49–55.

    Google Scholar 

  • Jeong, T. S., Choi, C. H., Lee, J. Y., & Oh, K. K. (2011). Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition. Journal of Bioresource Technology, 102, 10529–10534.

    Article  CAS  Google Scholar 

  • Jeong, T. S., Choi, C. H., Lee, J. Y., & Oh, K. K. (2012). Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii. Journal of Bioresource Technology, 116, 435–440.

    Article  CAS  Google Scholar 

  • John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 102, 186–193.

    Article  PubMed  CAS  Google Scholar 

  • Khambhaty, Y., Mody, K., Gandhi, R. M., Thampy, S., Maiti, P., Brahmbhatt, H., et al. (2012). Kappaphycus alvarezii as a source of bioethanol. Journal of Bioresource Technology, 103, 180–185.

    Article  CAS  Google Scholar 

  • Kim, N., Li, H., Jung, K., Chang, H. N., & Lee, P. C. (2011). Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresource Technology, 102, 7466–7469.

    Article  PubMed  CAS  Google Scholar 

  • Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Inhibition of ethanol producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66, 10–26.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, S., Palmqvist, E., Hagerdal, B. H., Tengborg, C., Stenberg, K., Zacchi, G., et al. (1999). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbiology Technology, 24, 151–159.

    Article  CAS  Google Scholar 

  • Lee, S. M., & Lee, J. H. (2011). The isolation and characterization of simultaneous saccharification and fermentation microorganisms for Laminaria japonica utilization. Journal of Bioresource Technology, 102, 5962–5967.

    Article  CAS  Google Scholar 

  • Meinita, M. D. N., & Hong, Y. (2012). Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii). Bioprocess and Biosystems Engineering, 35, 93–98.

    Article  PubMed  CAS  Google Scholar 

  • Meinita, M. D. N., Kang, J., Jeong, G., Koo, H. M., Park, S. M., & Hong, Y. (2012). Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). Journal of Applied Phycology, 24, 857–862.

    Article  CAS  Google Scholar 

  • Park, J., Hong, J., Jang, H. C., Oh, S. G., Kim, S., Yoon, J., et al. (2012). Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresource Technology, 108, 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Wi, S. G., Kim, H. J., Mahadevan, S. A., Yang, D. J., & Bae, H. J. (2009). The potential value of seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Journal of Bioresource Technology, 100, 6658–6660.

    Article  CAS  Google Scholar 

  • Yanagisawa, M., Nakamura, K., Ariga, O., & Nakasaki, K. (2011). Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochemistry, 46, 2111–2116.

    Article  CAS  Google Scholar 

  • Yoon, M., Choi, J., Lee, J. W., & Park, D. H. (2012). Improvement of saccharification process for bioethanol production from Undaria sp. by gamma irradiation. Radiation Physics and Chemistry, 81, 999–1002.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to extend their appreciation and gratitude for the funding from Seaweed Research Unit of University Malaysia Sabah under the EPP#3 NKEA Malaysian Government Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Mansa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mansa, R.F., Mansuit, H., Fong, K.F., Sipaut, C.S., Chye, F.Y., Yasir, S.M. (2013). Review: Pre-treatments and Fermentation of Seaweed for Bioethanol Production. In: Pogaku, R., Bono, A., Chu, C. (eds) Developments in Sustainable Chemical and Bioprocess Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6208-8_17

Download citation

Publish with us

Policies and ethics