Skip to main content

Applications of Electrochemistry in Medicine

  • Chapter
  • First Online:
Applications of Electrochemistry in Medicine

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 56))

Abstract

Medicine is an applied field of science that has always strived to make use of new and existing technologies and techniques, such as the synthesis of medications, X-ray and magnetic resonance (MR) imaging, mechanical implants, along with a host of others, to improve the health and increase the life span of individuals. Advancements in medicine have largely occurred in concert with technological advances resulting in a sophisticated interplay in the advancement of both. The ongoing goal of medicine to better treat patients requires a great deal of research from a wide variety of fields including electrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reclaru L, Lerf R, Eschler P-Y, Meyer J-M. Corrosion behavior of a welded stainless-steel orthopedic implant. Biomaterials. 2001;22:269–79.

    Article  CAS  Google Scholar 

  2. Reclaru L, Lerf R, Eschler P-Y, Blatter A, Meyer J-M. Pitting, crevice and galvanic corrosion of REX stainless-steel/CoCr orthopedic implant material. Biomaterials. 2002;23:3479–85.

    Article  CAS  Google Scholar 

  3. Zardiackas L, Roach M, Disegi J (2005) Galvanic corrosion of cobalt-base and titanium-base implant material couples. Medical device, materials II: proceedings from the materials & processes for medical devices conference 2004, p 398–402

    Google Scholar 

  4. Sawyer PN, Pate JW. Electrical potential differences across the normal aorta and aortic grafts of dogs. Am J Physiol. 1953;175:113.

    CAS  Google Scholar 

  5. Sawyer PN, Dennis C, Wesolowski SA. Electrical hemostasis in uncontrollable bleeding states. Ann Surg. 1961;154:556.

    Article  CAS  Google Scholar 

  6. Sawyer PN. Application of electrochemical techniques to the solution of problems in medicine. J EIectrochem Soc. 1978;125(10):419C–36C.

    Article  CAS  Google Scholar 

  7. Alvarez E, Vinciguerra J, DesJardins JD. The effect of a novel CoCr electropolishing technique on CoCr-UHMWPE bearing frictional performance for total joint replacements. Tribol Int. 2012;47:204–11.

    Article  Google Scholar 

  8. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010;6:1680–92.

    Article  CAS  Google Scholar 

  9. Xue D, Yun Y, Tan Z, Dong Z, Schulz MJ. In vivo and in vitro degradation behavior of magnesium alloys as biomaterials. J Mater Sci Tech. 2012;28(3):261–7.

    Article  CAS  Google Scholar 

  10. An YH, Woolf SK, Friedman RJ. Pre-clinical in vivo evaluation of orthopaedic bioabsorbable devices. Biomaterials. 2000;21:2635–52.

    Article  CAS  Google Scholar 

  11. Ylikontiola L, Sundqvuist K, Sàndor GKB, Törmälä P, Ashammakhi N. Self-reinforced bioresorbable poly-L/DL-lactide [SR-P(L/DL)LA] 70/30 miniplates and miniscrews are reliable for fixation of anterior mandibular fractures: a pilot study. Oral Surg Oral Med Oral Pathol. 2004;97(3):312–7.

    Article  Google Scholar 

  12. Suzuki H. Advances in the microfabrication of electrochemical sensors and systems. Electroanalysis. 2000;12(9):703–15.

    Article  CAS  Google Scholar 

  13. Skladal P. Advances in electrochemical immunosensors. Electroanalysis. 1997;9(10):737–45.

    Article  CAS  Google Scholar 

  14. Ahmed MU, Hossain MM, Tamiya E. Electrochemical biosensors for medical and food applications. Electroanalysis. 2008;20(6):616–26.

    Article  CAS  Google Scholar 

  15. Qi Y, McAlpine MC. Nanotechnology-enabled flexible and biocompatible energy harvesting. Energ Environ Sci. 2010;3(9):1275–85.

    Article  CAS  Google Scholar 

  16. Häsler E, Stein L, Harbauer G. Implantable physiological power supply with PVDF film. Ferroelectrics. 1984;60:277–82.

    Article  Google Scholar 

  17. Park KI, Xu S, Liu Y, Hwang GT, Kang SJ, Wang ZL, Lee KJ. Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 2010;10:4939–43.

    Article  CAS  Google Scholar 

  18. Li Z, Zhu GA, Yang RS, Wang AC, Wang ZL. Muscle-driven in vivo nanogenerator. Adv Mater. 2010;22(23):2534–7.

    Article  CAS  Google Scholar 

  19. Zhu G, Yang R, Wang S, Wang ZL. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010;10:3151–5.

    Article  CAS  Google Scholar 

  20. Gilanyi M, Ikrényi C, Fekete J, Ikrényi K, Kovach AGB. Ion concentrations in subcutaneous interstitial fluid: measured versus expected values. Am J Physiol. 1988;255(3):F513–9.

    CAS  Google Scholar 

  21. Gotman I. Characteristics of metals used in implants. Journal of Endourology 1997;11(6):383-389

    Google Scholar 

  22. Biesiekierski A, Wang J, Abdel-Hady Gepreel M, Wen C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8:1661–9.

    Article  CAS  Google Scholar 

  23. Walkowiak-Przybyło M, Klimek L, Okrόj W, Jakubowski W, Chwiłka M, Czajka A, Walkowiak B. Adhesion, activation, and aggregation of blood platelets and biofilm formation on the surfaces of titanium alloys Ti6Al4V and Ti6Al7Nb. J Biomed Mater Res A. 2012;100A(3):768–75.

    Article  Google Scholar 

  24. Aguilar Maya AE, Grana DR, Hazarabedian A, Kokubu GA, Luppo MI, Vigna G. Zr–Ti–Nb porous alloys for biomedical application. Mater Sci Eng C. 2012;32:321–9.

    Article  Google Scholar 

  25. Lecoeur J, Viegas MF, Abrantes LM. Metal materials biodegradation: a chronoamperometric study. J Mater Sci Mater Med. 1990;1:105–9.

    Google Scholar 

  26. Mani G, Feldman MD, Patel D, Agrawal CM. Coronary stents: a materials perspective. Biomaterials 2007;28:1689–1710

    Google Scholar 

  27. Plecko M, Sievert C, Andermatt D, Frigg R, Kronen P, Klein K, Stübinger S, Nuss K, Bürki A, Ferguson S, Stoeckle U, von Rechenberg B. Osseointegration and biocompatibility of different metal implants—a comparative experimental investigation in sheep. BMC Musculoskelet Disord. 2012;13:32.

    Article  CAS  Google Scholar 

  28. Williams DF. Titanium and titanium alloys. In: Williams DF, editor. Biocompatibility of clinical implant materials, vol. II. Boca Raton, FL: CRC Press; 1981. p. 9–44.

    Google Scholar 

  29. Williams DF. Tissue-biomaterial interactions. Journal of Materials Science. 1987;22:3421–3445

    Google Scholar 

  30. Assad M, Lemieux N, Rivard CH, Yahia L’H. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation. Bio-Med Mater Eng. 1999;9:1–12.

    CAS  Google Scholar 

  31. Nygren H, Tengvall P, Lundström I. The initial reactions of TiO2 with blood. J Biomed Mater Res. 1997;34:487–92.

    Article  CAS  Google Scholar 

  32. Bai Z, Filiaggi MJ, Dahn JR. Fibrinogen adsorption onto 316L stainless steel, Nitinol and titanium. Surf Sci. 2009;603:839–46.

    Article  CAS  Google Scholar 

  33. Gettens RTT, Gilbert JL. Fibrinogen adsorption onto 316L stainless steel under polarized conditions. J Biomed Mater Res. Part A 2008;85(1):176–187

    Google Scholar 

  34. Kereiakes DJ, Cannon LA, Ormiston JA, Turco MA, Mann T, Mishkel GJ, McGarry T, Wang H, Underwood P, Dawkins KD. Propensity-matched patient-level comparison of the TAXUS Liberté and TAXUS element (ION) paclitaxel-eluting stents. Am J Cardiol. 2011;108(6):828–37.

    Article  Google Scholar 

  35. Duda SH, Wiskirchen J, Tepe G, Bitzer M, Kaulich TW, Stoeckel D, Claussen CD. Physical properties of endovascular stents: an experimental comparison. J Vasc Intervent Radiol. 2000;11(5):645–54.

    Article  CAS  Google Scholar 

  36. Gertner ME, Schlesinger M. Electrochem and Solid-State Letters, 2003;6(4): J4–6.

    Article  CAS  Google Scholar 

  37. Sàndor GKB. Branemark’s remarkable implant: dentistry’s quantum leap—the surgical perspective. Geriatr Med Quart. 1989;1:162–7.

    Google Scholar 

  38. Reiner T, Kababya S, Gotman I. Protein incorporation within Ti scaffold for bone ingrowth using Sol–gel SiO2 as a slow release carrier. J Mater Sci Mater Med. 2008;19:583–9.

    Article  CAS  Google Scholar 

  39. Malluche HH. Aluminium and bone disease in chronic renal failure. Nephrol Dial Transplant. 2002;17(2):21–4.

    Article  CAS  Google Scholar 

  40. Matsuno H, Yokoyama A, Watari F, Uo M, Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials. 2001;22:1253-1262

    Google Scholar 

  41. Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33(3):477–86.

    Article  Google Scholar 

  42. Seeherman H. The influence of delivery vehicles and their properties on the repair of segmental defects and fractures with osteogenic factors. Journal of Bone & Joint Surgery. 2001;83(Supp 1):S79.

    Google Scholar 

  43. Liu Y, Li JP, Hunziker EB, De Groot K. Incorporation of growth factors into medical devices via biomimetic coatings. Phil Trans R Soc A. 2006;364(1838):233–48.

    Article  CAS  Google Scholar 

  44. Serlo WS, Ylikontiola L, Vesala A-L, Kaarela OI, Iber T, Sàndor GKB, Ashammakhi N. Effective correction of frontal cranial deformities using biodegradable fixation on the inner surface of the cranial bones during infancy. Childs Nerv Syst. 2007;23:1439–45.

    Article  Google Scholar 

  45. Poncin P, Proft J. Stent Tubing: Understanding the Desired Attributes. 2004. Materials & processes from medical devices conference, Anaheim, CA, USA, 8–10 Sept 2003, p 253–259

    Google Scholar 

  46. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728–34.

    Article  CAS  Google Scholar 

  47. Song GL, Song S. A possible biodegradable magnesium implant material. Adv Eng Mater. 2007;9(4):298–302.

    Article  CAS  Google Scholar 

  48. Song GL. Control of biodegradation of biocompatable magnesium alloys. Corros Sci. 2007;49:1696–701.

    Article  CAS  Google Scholar 

  49. Yun YH, Dong ZY, Yang D, Schulz MJ, Shanov VN, Yarmolenko S, Xu Z, Kumta P, Sfeir C. Biodegradable Mg corrosion and osteoblast cell culture studies. Mater Sci Eng C. 2009;29:1814–21.

    Article  CAS  Google Scholar 

  50. Gu XN, Zheng YF, Cheng Y, Zhong SP, Xi TF. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30(4):484–98.

    Article  CAS  Google Scholar 

  51. Walker J, Shadanbaz S, Kirkland NT, Stace E, Woodfield T, Staiger MP, Dias GJ. Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing. J Biomed Mater Res B Appl Biomater. 2012;100B(4):1134–41.

    Article  CAS  Google Scholar 

  52. Zhang J, Gu Y, Guo Y, Ning C. Electrochemical behavior of biocompatible AZ31 magnesium alloy in simulated body fluid. J Mater Sci. 2012;47:5197–204.

    Article  CAS  Google Scholar 

  53. Yao C, Slamovich EB, Webster TJ. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J Biomed Mater Res A. 2008;85A(1):157–66.

    Article  CAS  Google Scholar 

  54. Hehrlein C, Zimmermann M, Metz J, Ensigner W, Kubler W. Influence of surface texture and charge on the biocompatibility of endovascular stents. Coron Artery Dis. 1995;6(7):581–6.

    CAS  Google Scholar 

  55. Severini A, Mantero S, Tanzi MC, Cigada A, Salvetti M, Cozzi G, Motta A. Polyurethane-coated, self-expandable biliary stent: an experimental study. Acad Radiol. 1995;2(12):1078–81.

    Article  CAS  Google Scholar 

  56. Whelan DM, van der Giessen WJ, Krabbendam SC, van Vliet EA, Verdouw PD, Serruys PW, van Beusekom HMM. Biocompatibility of phosphorylcholine coated stents in normal porcine coronary arteries. Heart. 2000;83:338–45.

    Article  CAS  Google Scholar 

  57. Giannakopoulos HE, Sinn DP, Quinn PD. Biomet microfixation temporomandibular joint replacement system: a 3-year follow-up study of patients treated during 1995 to 2005. J Oral Maxillofac Surg. 2012;70(4):787–94.

    Article  Google Scholar 

  58. Vercaigne S, Wolke JGC, Naert I, Jansen JA. Histomorphometrical and mechanical evaluation of titanium plasma-spray-coated implants placed in the cortical bone of goats. J Biomed Mater Res. 1998;41(1):41–8.

    Article  CAS  Google Scholar 

  59. Oh S, Daraio C, Chen L-H, Pisanic TR, Fiñones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A. 2006;78A(1):97–103.

    Article  CAS  Google Scholar 

  60. Yu W, Zhang Y, Xu L, Sun S, Jiang X, Zhang F. Microarray-based bioinformatics analysis of osteoblasts on TiO2 nanotube layers. Colloids Surf B Biointerfaces. 2012;93:135–42.

    Article  CAS  Google Scholar 

  61. De Lange GL, Donath K. Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants. Biomaterials. 1989;10(2):121–5.

    Article  Google Scholar 

  62. Ripamonti U, Roden LC, Renton LF. Osteoinductive hydroxyapatite-coated titanium implants. Biomaterials. 2012;33:3813–23.

    Article  CAS  Google Scholar 

  63. Grandfield K, Palmquist A, Gonçalves S, Taylor A, Taylor M, Emanuelsson L, Thomsen P, Engqvist H. Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction. J Mater Sci Mater Med. 2011;22:899–906.

    Article  CAS  Google Scholar 

  64. Hench LL. Biomaterials: a forecast for the future. Biomaterials. 1998;19:1419–23.

    Article  CAS  Google Scholar 

  65. Kundu B, Soundrapandian C, Nandi SK, Mukherjee P, Dandapat N, Roy S, Datta BK, Mandal TK, Basu D, Bhattacharya RN. Development of new localized drug delivery system based on ceftriaxone-sulbactam composite drug impregnated porous hydroxyapatite: a systematic approach for in vitro and in vivo animal trial. Pharm Res. 2010;27:1659–76.

    Article  CAS  Google Scholar 

  66. Gravens DL, Margraf HW, Butcher HR, Ballinge WF. The antibacterial effect of treating sutures with silver. Surgery. 1973;73(1):122–7.

    CAS  Google Scholar 

  67. Pollini M, Paladini F, Licciulli A, Maffezzoli A, Nicolais L, Sannino A. Silver-coated wool yarns with durable antibacterial properties. J Appl Polymer Sci. 2012;125(3):2239–44.

    Article  CAS  Google Scholar 

  68. Roy M, Fielding GA, Beyenal H, Bandyopadhyay A, Bose S. Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating. ACS Appl Mater Interfaces. 2012;4:1341–9.

    Article  CAS  Google Scholar 

  69. Massè A, Bruno A, Bosetti M, Biasibetti A, Cannas M, Gallinaro P. Prevention of pin track infection in external fixation with silver coated pins: clinical and microbiological results. J Biomed Mater Res. 2000;53(5):600–4.

    Article  Google Scholar 

  70. Bosetti M, Massè A, Tobin E, Cannas M. Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials. 2002;23:887–92.

    Article  CAS  Google Scholar 

  71. Mahan J, Seligson D, Henry S, Hynes P, Dobbins J. Factors in pin tract infections. Orthopedics. 1991;14:305–8.

    CAS  Google Scholar 

  72. Martínez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Vanden Hoek A, Sánchez EM, Reiner NE, Gaynor EC, Pryzdial ELG, Conway EM, Orrantia E, Ruiz F, Av-Gay Y, Bach H. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine. 2012;8:328–36.

    Article  Google Scholar 

  73. Petro R, Schlesinger M. Direct electroless deposition of nickel boron alloys and copper on aluminum containing magnesium alloys. Electrochem Solid State Lett. 2011;14(4):D37–40.

    Article  CAS  Google Scholar 

  74. Petro R, Schlesinger M. Direct electroless deposition of low phosphorous Ni-P films on AZ91D Mg alloy. J Electrochem Soc. 2012;159(7):D455–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Petro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petro, R., Schlesinger, M. (2013). Applications of Electrochemistry in Medicine. In: Schlesinger, M. (eds) Applications of Electrochemistry in Medicine. Modern Aspects of Electrochemistry, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-6148-7_1

Download citation

Publish with us

Policies and ethics