Skip to main content
Log in

Electrochemical behavior of biocompatible AZ31 magnesium alloy in simulated body fluid

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dense oxidation coatings have been successfully developed on biocompatible AZ31 magnesium alloy, using microarc oxidation technique, to improve the corrosion resistance. Three different deposition voltages of 250, 300, and 350 V have been employed. The effect of voltage on the coating corrosion resistance has been evaluated through electrochemical experiments in a simulated body fluid (SBF) up to 7 days. Potentiodynamic polarization and electrochemical impedance spectroscopy scans were performed in the SBF solution, followed by optical microscopy surface inspection. The results indicate that the corrosion rates of the coatings are in the order of 250 < 300 < 350 V after immersion for 7 days, and the charge transfer resistance (R ct) of the three samples is in the order of 250 > 300 > 350 V. Both the electrochemical tests and the surface inspection suggest that the 250 V coating has the highest corrosion resistance, with lowest corrosion current density, highest R ct, and the best surface quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Song GL, Song SZ (2007) Adv Eng Mater 9(4):298

    Article  CAS  Google Scholar 

  2. Paul Degarmo E (1979) In: Materials and processes in manufacturing, 5th edn. Collin Macmillan, New York

  3. Song G (2007) Corros Sci 49(4):1696

    Article  CAS  Google Scholar 

  4. Okuma T (2001) Nutrition 17(7–8):679

    Article  CAS  Google Scholar 

  5. Nel S (2000) Clin Chim Acta 294:1

    Article  Google Scholar 

  6. Zhang K et al (2006) J Eur Ceram Soc 26(3):253

    Article  Google Scholar 

  7. Vormann J (2003) Mol Asp Med 24(1–3):27

    Article  CAS  Google Scholar 

  8. Wolf FI, Cittadini A (2003) Mol Asp Med 24(1–3):3

    Article  CAS  Google Scholar 

  9. Hartwig A (2001) Mutat Res Fundam Mol Mech Mugag 475(1–2):113

    Article  CAS  Google Scholar 

  10. Chen J et al (2008) Trans Nonferrous Met Soc China 18(Supplement 1):s361

    Article  CAS  Google Scholar 

  11. Li L, Gao J, Wang Y (2004) Surf Coat Technol 185(1):92

    Article  CAS  Google Scholar 

  12. Witte F et al (2005) Biomaterials 26(17):3557

    Article  CAS  Google Scholar 

  13. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Biomaterials 27(9):1728

    Article  CAS  Google Scholar 

  14. Aghion E, Lulu N (2009) J Mater Sci 44(16):4279. doi:10.1007/s10853-009-3634-1

    Article  CAS  Google Scholar 

  15. Li Y, Hodgson P, Wen CE (2011) J Mater Sci 46(2):365–371. doi:10.1007/s10853-010-4843-3

    Article  Google Scholar 

  16. Gu X et al (2009) Biomaterials 30(4):484

    Article  CAS  Google Scholar 

  17. He W, Zhang E, Yang K (2010) Mater Sci Eng, C 30(1):167

    Article  CAS  Google Scholar 

  18. Smith MR et al (2012) J Biomed Mater Res B 100B(1):206

    Article  CAS  Google Scholar 

  19. Witte F et al (2010) Acta Biomater 6(5):1792

    Article  CAS  Google Scholar 

  20. Lee YK, Lee K, Jung T (2008) Electrochem Commun 10(11):1716

    Article  CAS  Google Scholar 

  21. Yerokhin AL et al (1999) Surf Coat Technol 122(2–3):73

    Article  CAS  Google Scholar 

  22. Wang YM et al (2005) Mater Chem Phys 90(1):128

    Article  CAS  Google Scholar 

  23. Liu P, Pan X, Yang W, Cai K, Chen Y (2012) Mater Lett 75:118

  24. Zhao L et al (2010) Corros Sci 52(7):2228

    Article  CAS  Google Scholar 

  25. Wang YM et al (2009) Appl Surf Sci 255(22):9124

    Article  CAS  Google Scholar 

  26. Cai Q et al (2006) Surf Coat Technol 200(12–13):3727

    Article  CAS  Google Scholar 

  27. Wen Z et al (2009) J Alloy Compd 488(1):392

    Article  CAS  Google Scholar 

  28. Gu Y et al (2011) J Mater Eng Perform 1–6. doi:10.1007/s11665-011-9980-6

  29. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T, Biomed J (1990) J Biomed Mater Res 24(6):721

    Article  CAS  Google Scholar 

  30. Liang J et al (2009) Electrochim Acta 54(14):3842

    Article  CAS  Google Scholar 

  31. Song Y et al (2009) Mater Sci Eng C 29(3):1039

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors, Chengyun Ning and Yuanjun Guo, gratefully acknowledge the financial support of the National Basic Research Program of China (2012CB619100) and the National Natural Science Foundation of China (grant no. 51072057). The study was partially supported by NSF grant (award no. 0723244) to Jing Zhang, and the UAF Graduate School Fellowship to Yanhong Gu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyun Ning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Gu, Y., Guo, Y. et al. Electrochemical behavior of biocompatible AZ31 magnesium alloy in simulated body fluid. J Mater Sci 47, 5197–5204 (2012). https://doi.org/10.1007/s10853-012-6403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6403-5

Keywords

Navigation