Skip to main content

Medical Nanomaterials

  • Living reference work entry
  • First Online:
Nanomedicine

Part of the book series: Micro/Nano Technologies ((MNT))

  • 39 Accesses

Abstract

Nanomaterials, as an emerging material, have aroused extensive attention due to the small size effect, the quantum confinement effect, and the surface effect as well as potential applications in medical devices, electronic devices, coatings, and other industries. Especially, their medical applications over the past 10 years have promised to add a new impetus to the diagnostics and therapeutics of a wide range of human pathologies, including cancer, cardiovascular diseases, dental diseases, and diseases of the central and peripheral nervous systems. Their unique properties due to the nanoscale size can significantly improve the sensitivity and specificity of diagnostics and therapeutics, making them superior over conventional materials. The growth in medical nanomaterials also fuels advances in health engineering, regenerative medicine, and the development of medical devices. This chapter considers the representative promising medical nanomaterials including those for bone-tissue, carbon nanomaterials, silicon nanomaterials, magnetic nanoparticles, and quantum dots. Their synthesis, modification, biofunctionalization, and medical application are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Nair AK, Gautieri A, Chang SW, Buehler MJ (2013) Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun 4(1):1724. https://doi.org/10.1038/ncomms2720

    Article  Google Scholar 

  2. Wang Q, Yan J, Yang J, Li B (2016) Nanomaterials promise better bone repair. Mater Today 19(8):451–463. https://doi.org/10.1016/j.mattod.2015.12.003

    Article  Google Scholar 

  3. Park SS, Lee HJ, Oh IH, Lee BT (2005) Effects of Ag-doping on microstructure and mechanical properties of hydroxyapatite films. Key Eng Mater 277-279:113–118. https://doi.org/10.4028/www.scientific.net/KEM.277-279.113

    Article  Google Scholar 

  4. Cheng ZQ, Pang GH, Wang HY, Li JF, Zhao XZ (2012) Fabrication and characterization of poly l-lactic acid/modified nano-hydroxyapatite composite fibrous scaffold. Adv Mater Res 535-537:1095–1099. https://doi.org/10.4028/www.scientific.net/AMR.535-537.1095

    Article  Google Scholar 

  5. Li J, Deng C, Liang W, Kang F, Bai Y, Ma B et al (2021) Mn-containing bioceramics inhibit osteoclastogenesis and promote osteoporotic bone regeneration via scavenging ROS. Bioact Mater 6(11):3839–3850. https://doi.org/10.1016/j.bioactmat.2021.03.039

    Article  Google Scholar 

  6. Du MZ, Chen JD, Liu KH, Xing HR, Song C (2021) Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Compos Part B-Eng 215(15). https://doi.org/10.1016/j.compositesb.2021.108790

  7. Gao CD, Deng YW, Feng P, Mao ZZ, Li PJ, Yang B et al (2014) Current progress in bioactive ceramic scaffolds for bone repair and regeneration. Int J Mol Sci 15(3):4714–4732. https://doi.org/10.3390/ijms15034714

    Article  Google Scholar 

  8. Xiong Y, Ren C, Zhang B, Yang HS, Lang Y, Min L et al (2014) Analyzing the behavior of a porous nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composite for healing of bone defects. Int J Nanomedicine 9:485–494. https://doi.org/10.2147/IJN.S52990

    Article  Google Scholar 

  9. Minardi S, Corradetti B, Taraballi F, Sandri M, Van Eps J, Cabrera FJ et al (2015) Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials 62:128–137. https://doi.org/10.1016/j.biomaterials.2015.05.011

    Article  Google Scholar 

  10. Wu ZH, Ma XY, Ma YF, Yang ZG, Yuan Y, Liu CS (2020) Core/shell PEGs/HA hybrid nanoparticle via micelle-coordinated mineralization for tumor-specific therapy. ACS Appl Mater Interfaces 12(10):12109–12119. https://doi.org/10.1021/acsami.0c00068

    Article  Google Scholar 

  11. Zhou ZW, Li HP, Wang KK, Guo Q, Li CZ, Jiang HL et al (2017) Bioreducible cross-linked hyaluronic acid/calcium phosphate hybrid nanoparticles for specific delivery of siRNA in melanoma tumor therapy. ACS Appl Mater Interfaces 9(17):14576–14589. https://doi.org/10.1021/acsami.6b15347

    Article  Google Scholar 

  12. Yuan Y, Liu CS, Qian JC, Wang J, Zhang Y (2010) Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials 31(4):730–740. https://doi.org/10.1016/j.biomaterials.2009.09.088

    Article  Google Scholar 

  13. Xu LH, Tong GH, Song QL, Zhu CY, Zhang HL, Shi JJ et al (2018) Enhanced intracellular Ca2+ nanogenerator for tumor-specific synergistic therapy via disruption of mitochondrial Ca2+ homeostasis and photothermal therapy. ACS Nano 12(7):6806–6818. https://doi.org/10.1021/acsnano.8b02034

    Article  Google Scholar 

  14. Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J et al (2019) Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem Rev 119(16):9559–9656. https://doi.org/10.1021/acs.chemrev.9b00099

    Article  Google Scholar 

  15. Liu J, Li R, Yang B (2020) Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent Sci 6(12):2179–2195. https://doi.org/10.1021/acscentsci.0c01306

    Article  Google Scholar 

  16. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2(34). https://doi.org/10.1039/c4tc00988f

  17. Ghosh S, Bachilo SM, Weisman RB (2010) Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat Nanotechnol 5(6):443–450. https://doi.org/10.1038/nnano.2010.68

    Article  Google Scholar 

  18. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS et al (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116(9):5464–5519. https://doi.org/10.1021/acs.chemrev.5b00620

    Article  Google Scholar 

  19. Maiti D, Tong X, Mou X, Yang K (2018) Carbon-based nanomaterials for biomedical applications: a recent study. Front Pharmacol 9:1401. https://doi.org/10.3389/fphar.2018.01401

    Article  Google Scholar 

  20. Diao S, Blackburn JL, Hong G, Antaris AL, Chang J, Wu JZ et al (2015) Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew Chem Int Ed 54(49):14758–14762. https://doi.org/10.1002/anie.201507473

    Article  Google Scholar 

  21. Iverson NM, Barone PW, Shandell M, Trudel LJ, Sen S, Sen F et al (2013) In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol 8(11):873–880. https://doi.org/10.1038/nnano.2013.222

    Article  Google Scholar 

  22. Yin F, Hu K, Chen Y, Yu M, Wang D, Wang Q et al (2017) SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer. Theranostics 7(5):1133–1148. https://doi.org/10.7150/thno.17841

    Article  Google Scholar 

  23. Zhao H, Duan J, Xiao Y, Tang G, Wu C, Zhang Y et al (2018) Microenvironment-driven cascaded responsive hybrid carbon dots as a multifunctional theranostic nanoplatform for imaging-traceable gene precise delivery. Chem Mater 30(10):3438–3453. https://doi.org/10.1021/acs.chemmater.8b01011

    Article  Google Scholar 

  24. Canham L (2000) Gaining light from silicon. Nature 408(23):411–412. https://doi.org/10.1038/35044156

    Article  Google Scholar 

  25. Ding Z, Quinn BM, Haram SK, Pell LE, Korgel BA, Bard AJ (2002) Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296(5571):1293–1297. https://doi.org/10.1126/science.1069336

    Article  Google Scholar 

  26. Qiu M, Singh A, Wang D, Qu J, Swihart M, Zhang H et al (2019) Biocompatible and biodegradable inorganic nanostructures for nanomedicine: silicon and black phosphorus. Nano Today 25:135–155. https://doi.org/10.1016/j.nantod.2019.02.012

    Article  Google Scholar 

  27. Shiohara A, Hanada S, Prabakar S, Fujioka K, Lim T, Yamamoto K et al (2010) Chemical reactions on surface molecules attached to silicon quantum dots. J Am Chem Soc 132(1):248–253. https://doi.org/10.1021/ja906501v

    Article  Google Scholar 

  28. Song B, He Y (2019) Fluorescent silicon nanomaterials: from synthesis to functionalization and application. Nano Today 26:149–163. https://doi.org/10.1016/j.nantod.2019.03.005

    Article  Google Scholar 

  29. Zhong Y, Peng F, Bao F, Wang S, Ji X, Yang L et al (2013) Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc 135(22):8350–8356. https://doi.org/10.1021/ja4026227

    Article  Google Scholar 

  30. He Y, Fan C, Lee S-T (2010) Silicon nanostructures for bioapplications. Nano Today 5(4):282–295. https://doi.org/10.1016/j.nantod.2010.06.008

    Article  Google Scholar 

  31. Ma L, Song X, Yu Y, Chen Y (2021) Two-dimensional silicene/silicon nanosheets: an emerging silicon-composed nanostructure in biomedicine. Adv Mater 33(31):2008226. https://doi.org/10.1002/adma.202008226

    Article  Google Scholar 

  32. Ji X, Wang H, Song B, Chu B, He Y (2018) Silicon nanomaterials for biosensing and bioimaging analysis. Front Chem 6:38. https://doi.org/10.3389/fchem.2018.00038

    Article  Google Scholar 

  33. Peng F, Su Y, Zhong Y, Fan C, Lee S, He Y (2014) Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc Chem Res 47(2):612–623. https://doi.org/10.1021/ar400221g

    Article  Google Scholar 

  34. Bashir MR, Bhatti L, Marin D, Nelson RC (2015) Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 41(4):884–898. https://doi.org/10.1002/jmri.24691

    Article  Google Scholar 

  35. Frenkel J, Doefman J (1930) Spontaneous and induced magnetisation in ferromagnetic bodies. Nature 126(3173):2. https://doi.org/10.1038/126274a0

    Article  Google Scholar 

  36. Wu L, Mendoza-Garcia A, Li Q, Sun S (2016) Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev 116(18):10473–10512. https://doi.org/10.1021/acs.chemrev.5b00687

    Article  Google Scholar 

  37. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T et al (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47(44):8438–8441. https://doi.org/10.1002/anie.200802469

    Article  Google Scholar 

  38. Yi DK, Lee SS, Papaefthymiou GC, Ying JY (2006) Nanoparticle architectures templated by SiO2/Fe2O3 nanocompo-site. Chem Mater 18(3):614–619. https://doi.org/10.1021/cm0512979

    Article  Google Scholar 

  39. Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X et al (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc 126(32):9938–9939. https://doi.org/10.1021/ja0464802

    Article  Google Scholar 

  40. Gloag L, Mehdipour M, Chen D, Tilley RD, Gooding JJ (2019) Advances in the application of magnetic nanoparticles for sensing. Adv Mater 31(48):e1904385. https://doi.org/10.1002/adma.201904385

    Article  Google Scholar 

  41. Hill HD, Mirkin CA (2006) The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat Protoc 1(1):324–336. https://doi.org/10.1038/nprot.2006.51

    Article  Google Scholar 

  42. Wu K, Su D, Liu J, Saha R, Wang JP (2019) Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology 30(50):502003. https://doi.org/10.1088/1361-6528/ab4241

    Article  Google Scholar 

  43. Shen Z, Chen T, Ma X, Ren W, Zhou Z, Zhu G et al (2017) Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 11(11):10992–11004. https://doi.org/10.1021/acsnano.7b04924

    Article  Google Scholar 

  44. Js C, Lee JH, Shin TH, Song HT, Kim EY, Cheon J (2010) Self-confirming “AND” logic nanoparticles for fault-free MRI. J Am Chem Soc 132(12):11015–11017. https://doi.org/10.1021/ja104503g

    Article  Google Scholar 

  45. Li B, Gong T, Xu N, Cui F, Yuan B, Yuan Q et al (2020) Improved stability and photothermal performance of polydopamine-modified Fe3O4 nanocomposites for highly efficient magnetic resonance imaging-guided photothermal therapy. Small 16(45):e2003969. https://doi.org/10.1002/smll.202003969

    Article  Google Scholar 

  46. Yu J, Yang C, Li J, Ding Y, Zhang L, Yousaf MZ et al (2014) Multifunctional Fe5C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv Mater 26(24):4114–4120. https://doi.org/10.1002/adma.201305811

    Article  Google Scholar 

  47. Garcia AD, Talapin DV, Victor K, Yasuhiko A, Manfred B, Edward S (2021) Semiconductor quantum dots: technological progress and future challenges. Science 373(6555):640–654. https://doi.org/10.1126/science.aaz8541

    Article  Google Scholar 

  48. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46. https://doi.org/10.1038/nbt764

    Article  Google Scholar 

  49. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446. https://doi.org/10.1038/nmat1390

    Article  Google Scholar 

  50. Liu ZY, Liu AA, Fu H, Cheng QY, Zhang MY, Pan MM et al (2021) Breaking through the size control dilemma of silver chalcogenide quantum dots via trialkylphosphine-induced ripening: leading to Ag2Te emitting from 950 to 2100 nm. J Am Chem Soc 143(32):12867–12877. https://doi.org/10.1021/jacs.1c06661

    Article  Google Scholar 

  51. Jin X, Xie K, Zhang T, Lian H, Zhang Z, Xu B et al (2020) Cation exchange assisted synthesis of ZnCdSe/ZnSe quantum dots with narrow emission line widths and near-unity photoluminescence quantum yields. Chem Commun 56(45):6130–6133. https://doi.org/10.1039/d0cc01302a

    Article  Google Scholar 

  52. Hanifi DA, Bronstein ND, Koscher BA, Nett Z, Swabeck JK, Takano K et al (2019) Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science 363(6432):1199–1202. https://doi.org/10.1126/science.aat3803

    Article  Google Scholar 

  53. Efros AL, Brus LE (2021) Nanocrystal quantum dots: from discovery to modern development. ACS Nano 15(4):6192–6210. https://doi.org/10.1021/acsnano.1c01399

    Article  Google Scholar 

  54. Anderson NC, Hendricks MP, Choi JJ, Owen JS (2013) Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. J Am Chem Soc 135(49):18536–18548. https://doi.org/10.1021/ja4086758

    Article  Google Scholar 

  55. Ivanov SA, Piryatinski A, Nanda J, Tretiak S, Zavadil KR, Wallace WO et al (2007) Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. J Am Chem Soc 129(38):11708–11719. https://doi.org/10.1021/ja068351m

    Article  Google Scholar 

  56. Cui R, Liu HH, Xie HY, Zhang ZL, Yang YR, Pang DW et al (2009) Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. Adv Fucnt Mater 19(15):2359–2364. https://doi.org/10.1002/adfm.200801492

    Article  Google Scholar 

  57. Wang ZG, Liu SL, Pang DW (2021) Quantum dots: a promising fluorescent label for probing virus trafficking. Acc Chem Res 54(14):2991–3002. https://doi.org/10.1021/acs.accounts.1c00276

    Article  Google Scholar 

  58. Zhang MX, Yue JY, Cui R, Ma ZR, Wan H, Wang FF et al (2018) Bright quantum dots emitting at approximately 1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proc Natl Acad Sci U S A 115(26):6590–6595. https://doi.org/10.1073/pnas.1806153115

    Article  Google Scholar 

  59. Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CAS, Urano Y et al (2007) Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett 7(6):1711–1716. https://doi.org/10.1021/nl0707003

    Article  Google Scholar 

  60. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 17(1):20–37. https://doi.org/10.1038/nrc.2016.108

    Article  Google Scholar 

  61. Sun Q, Zhou Z, Qiu N, Shen Y (2017) Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv Mater 29(14):1606628. https://doi.org/10.1002/adma.201606628

    Article  Google Scholar 

  62. Li CY, Zhang YJ, Chen GC, Hu F, Zhao K, Wang QB (2017) Engineered multifunctional nanomedicine for simultaneous stereotactic chemotherapy and inhibited osteolysis in an orthotopic model of bone metastasis. Adv Mater 29(13):1605754. https://doi.org/10.1002/adma.201605754

    Article  Google Scholar 

  63. Song CH, Zhang YJ, Li CY, Chen GC, Kang XF, Wang QB (2016) Enhanced nanodrug delivery to solid tumors based on a tumor vasculature-targeted strategy. Adv Funct Mater 26(23):4192–4200. https://doi.org/10.1002/adfm.201600417

    Article  Google Scholar 

  64. Hao XX, Li CY, Zhang YJ, Wang HA, Chen GC, Wang M et al (2018) Programmable chemotherapy and immunotherapy against breast cancer guided by multiplexed fluorescence imaging in the second near-infrared window. Adv Mater 30(51):1804437. https://doi.org/10.1002/adma.201804437

    Article  Google Scholar 

  65. Tsay JM, Trzoss M, Shi L, Kong X, Selke M, Jung ME et al (2007) Singlet oxygen production by peptide-coated quantum dot–photosensitizer conjugates. J Am Chem Soc 129(21):6865–6871. https://doi.org/10.1021/ja070713i

    Article  Google Scholar 

  66. Wen QX, Zhang YJ, Li CY, Ling SS, Yang XH, Chen GC et al (2019) NIR-II fluorescent self-assembled peptide nanochain for ultrasensitive detection of peritoneal metastasis. Angew Chem Int Ed 58(32):11001–11006. https://doi.org/10.1002/anie.201905643

    Article  Google Scholar 

  67. Tian R, Ma H, Zhu S, Lau J, Ma R, Liu Y et al (2020) Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery. Adv Mater 32(11):e1907365. https://doi.org/10.1002/adma.201907365

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai-Wen Pang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liu, AA., Wang, ZG., Pang, DW. (2022). Medical Nanomaterials. In: Gu, N. (eds) Nanomedicine. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-9374-7_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9374-7_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9374-7

  • Online ISBN: 978-981-13-9374-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics