Skip to main content

Microneedles for Intradermal Vaccination: Immunopotentiation and Formulation Aspects

  • Chapter
  • First Online:
Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines
  • 1209 Accesses

Abstract

Microneedle systems can open ample possibilities for the development of new generation vaccines and even revolutionize the practice of vaccination [1]. Ease of administration, improved immune protection, antigen dose sparing, and independence of cold-chain distribution are among the many potential benefits that the technology can introduce in the field [2]. Due to the same advantages, microneedle-based vaccines, and intradermal vaccination in general can also open new prospects for the development of low cost vaccines for the developing countries [3, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plotkin SA (2005) Vaccines: past, present and future. Nat Med 11:S5–S11

    Article  PubMed  CAS  Google Scholar 

  2. Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK (2009) Microneedle-based vaccines. In: Compans RW, Orenstein WA (eds) Curr Top Microbiol Immunol vol 333: vaccines for pandemic influenza. Springer, pp 369–393, Berlin

    Google Scholar 

  3. Hickling JK, Jones KR, Friede M, Zehrung D, Chenc D, Kristensenc D (2011) Intradermal delivery of vaccines: potential benefits and current challenges. Bull World Health Org 89:221–226

    Article  PubMed  CAS  Google Scholar 

  4. Kristensen D, Zaffran M (2010) Designing vaccines for developing-country populations: ideal attributes, delivery devices, and presentation formats. Procedia Vaccinol 2:119–123

    Article  Google Scholar 

  5. Mikszta JA, Laurent PE (2008) Cutaneous delivery of prophylactic and therapeutic vaccines: historical perspective and future outlook. Expert Rev Vaccines 7:1329–1339

    Article  PubMed  Google Scholar 

  6. Glenn GM, Kenney RT (2006) Mass vaccination: solutions in the skin. Curr Top Microbiol Immunol 304:247–268

    Article  PubMed  CAS  Google Scholar 

  7. Larregina AT, Falo LD Jr (2004) Changing paradigms in cutaneous immunology: adapting with dendritic cells. J Investig Dermatol 124:1–12

    Article  Google Scholar 

  8. Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26:1261–1268

    Article  PubMed  CAS  Google Scholar 

  9. Prausnitz MR, McAllister DV, Kaushik S, Patel PN, Mayberry JL, Allen MG (1999) Microfabricated microneedles for transdermal drug delivery. American society of mechanical engineers, bioengineering division (publication). BED 42:89–90

    Google Scholar 

  10. Arora A, Prausnitz MR, Mitragotri S (2008) Micro-scale devices for transdermal drug delivery. Int J Pharm 364:227–236

    Article  PubMed  CAS  Google Scholar 

  11. Kendall MAF (2010) Needle-free vaccine injection. In: Schäfer-Korting M (ed) Drug delivery. Springer, Berlin, pp 193–219

    Chapter  Google Scholar 

  12. Andrianov AK, DeCollibus DP, Gillis HA, Kha HH, Marin A, Prausnitz MR, Babiuk LA, Townsend H, Mutwiri G (2009) Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization. Proc Natl Acad Sci USA 106:18936–18941. doi:10.1073/pnas.0908842106

    Article  PubMed  CAS  Google Scholar 

  13. Matriano JA, Cormier M, Johnson J, Young WA, Buttery M, Nyam K, Daddona PE (2002) Macroflux® microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharm Res 19:63–70

    Article  PubMed  CAS  Google Scholar 

  14. Vogelbruch M, Nuss B, Korner M, Kapp A, Kiehl P, Bohm W (2000) Aluminium-induced granulomas after inaccurate intradermal hyposensitization injections of aluminium-adsorbed depot preparations. Allergy 55:883–887

    PubMed  CAS  Google Scholar 

  15. Glenn GM, Taylor DN, Li X, Frankel S, Montemarano A, Alving CR (2000) Transcutaneous immunization: a human vaccine delivery strategy using a patch. Nat Med 6:1403–1406

    Article  PubMed  CAS  Google Scholar 

  16. Mikszta JA, Sullivan VJ, Dean C, Waterston AM, Alarcon JB, Dekker Iii JP, Brittingham JM, Huang J, Hwang CR, Ferriter M, Jiang G, Mar K, Saikh KU, Stiles BG, Roy CJ, Ulrich RG, Harvey NG (2005) Protective immunization against inhalational anthrax: a comparison of minimally invasive delivery platforms. J Infect Dis 191:278–288

    Article  PubMed  CAS  Google Scholar 

  17. Laurent PE, Bonnet S, Alchas P, Regolini P, Mikszta JA, Pettis R, Harvey NG (2007) Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system. Vaccine 25:8833–8842

    Article  PubMed  CAS  Google Scholar 

  18. Frey SE, Couch RB, Tacket CO, Treanor JJ, Wolff M, Newman FK, Atmar RL, Edelman R, Nolan CM, Belshe RB (2002) Clinical responses to undiluted and diluted smallpox vaccine. N Engl J Med 346:1265–1274

    Article  PubMed  CAS  Google Scholar 

  19. Holland D, Booy R, De Looze F, Eizenberg P, McDonald J, Karrasch J, McKeirnan M, Salem H, Mills G, Reid J (2008) Intradermal influenza vaccine administered using a new microinjection system produces superior immunogenicity in elderly adults: a randomized controlled trial. J Infect Dis 198:650–658

    Article  PubMed  Google Scholar 

  20. Mitragotri S (2006) Current status and future prospects of needle-free liquid jet injectors. Nat Rev Drug Discov 5:543–548

    PubMed  Google Scholar 

  21. Kendall M, Mitchell T, Wrighton-Smith P (2004) Intradermal ballistic delivery of micro-particles into excised human skin for pharmaceutical applications. J Biomech 37:1733–1741

    Article  PubMed  Google Scholar 

  22. Raju PA, McSloy N, Truong NK, Kendall MAF (2006) Assessment of epidermal cell viability by near infrared multi-photon microscopy following ballistic delivery of gold micro-particles. Vaccine 24:4644–4647

    Article  PubMed  CAS  Google Scholar 

  23. Glenn GM, Kenney RT, Hammond SA, Ellingsworth LR (2003) Transcutaneous immunization and immunostimulant strategies. Immunol Allergy Clin North Am 23:787–813

    Article  PubMed  Google Scholar 

  24. Kim YC (2010) Enhanced memory responses to seasonal H1N1 influenza vaccination of the skin with the use of vaccine-coated microneedles. J Infect Dis 201:190–198

    Article  PubMed  CAS  Google Scholar 

  25. Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR (2010) Formulation of microneedles coated with influenza virus-like particle vaccine. AAPS PharmSciTech 11(3):1–9

    Google Scholar 

  26. Kim YC, Quan FS, Compans RW, Kang SM, Prausnitz MR (2010) Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J Control Release 142:187–195

    Article  PubMed  CAS  Google Scholar 

  27. Zhu Q (2009) Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc Natl Acad Sci USA 106:7968–7973

    Article  PubMed  CAS  Google Scholar 

  28. Kim YC, Quan FS, Yoo DG, Compans RW, Kang SM, Prausnitz MR (2009) Improved influenza vaccination in the skin using vaccine coated microneedles. Vaccine 27:6932–6938

    Article  PubMed  CAS  Google Scholar 

  29. Koutsonanos DG (2009) Transdermal influenza immunization with vaccine-coated microneedle arrays. PLoS One 4:e4773

    Article  PubMed  Google Scholar 

  30. Singh M (2006) Vaccine adjuvants and delivery systems. Wiley-Interscience, Hoboken, p 449

    Google Scholar 

  31. Lodmell DL, Ray NB, Ulrich JT, Ewalt LC (2000) DNA vaccination of mice against rabies virus: effects of the route of vaccination and the adjuvant monophosphoryl lipid A (MPL®). Vaccine 18:1059–1066

    Article  PubMed  CAS  Google Scholar 

  32. Baldwin SL, Bertholet S, Kahn M, Zharkikh I, Ireton GC, Vedvick TS, Reed SG, Coler RN (2009) Intradermal immunization improves protective efficacy of a novel TB vaccine candidate. Vaccine 27:3063–3071

    Article  PubMed  CAS  Google Scholar 

  33. Weiner GJ, Liu HM, Wooldridge JE, Dahle CE, Krieg AM (1997) Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc Natl Acad Sci USA 94:10833–10837

    Article  PubMed  CAS  Google Scholar 

  34. McGowen AL, Hale LP, Shelburne CP, Abraham SN, Staats HF (2009) The mast cell activator compound 48/80 is safe and effective when used as an adjuvant for intradermal immunization with Bacillus anthracis protective antigen. Vaccine 27:3544–3552

    Article  PubMed  CAS  Google Scholar 

  35. Disis ML, Bernhard H, Shiota FM, Hand SL, Gralow JR, Huseby ES, Gillis S, Cheever MA (1996) Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood 88:202–210

    PubMed  CAS  Google Scholar 

  36. Vandermeulen G, Daugimont L, Richiardi H, Vanderhaeghen ML, Lecouturier N, Ucakar B, Préat V (2009) Effect of tape stripping and adjuvants on immune response after intradermal DNA electroporation. Pharm Res 26:1745–1751

    Article  PubMed  CAS  Google Scholar 

  37. Zhang L, Widera G, Rabussay D (2004) Enhancement of the effectiveness of electroporation-augmented cutaneous DNA vaccination by a particulate adjuvant. Bioelectrochemistry 63:369–373

    Article  PubMed  CAS  Google Scholar 

  38. Huang J, D’Souza AJ, Alarcon JB, Mikszta JA, Ford BM, Ferriter MS, Evans M, Stewart T, Amemiya K, Ulrich RG (2009) Protective immunity in mice achieved with dry powder formulation and alternative delivery of plague F1-V vaccine. Clin Vaccine Immunol 16:719–725

    Article  PubMed  CAS  Google Scholar 

  39. Mikszta JA, Sullivan VJ, Dean C, Waterston AM, Alarcon JB, Dekker JP, Brittingham JM, Huang J, Hwang CR, Ferriter M (2005) Protective immunization against inhalational anthrax: a comparison of minimally invasive delivery platforms. J Infect Dis 191:278

    Article  PubMed  CAS  Google Scholar 

  40. Bal SM, Ding Z, Kersten GFA, Jiskoot W, Bouwstra JA (2010) Microneedle-based transcutaneous immunisation in mice with N-trimethyl chitosan adjuvanted diphtheria toxoid formulations. Pharm Res 27:1–11

    Article  Google Scholar 

  41. Ding Z, Van Riet E, Romeijn S, Kersten GFA, Jiskoot W, Bouwstra JA (2009) Immune modulation by adjuvants combined with diphtheria toxoid administered topically in BALB/c mice after microneedle array pretreatment. Pharm Res 26:1635–1643

    Article  PubMed  CAS  Google Scholar 

  42. Cui Z, Baizer L, Mumper RJ (2003) Intradermal immunization with novel plasmid DNA-coated nanoparticles via a needle-free injection device. J Biotechnol 102:105–115

    Article  PubMed  CAS  Google Scholar 

  43. Zuber AK, Bråve A, Engström G, Zuber B, Ljungberg K, Fredriksson M, Benthin R, Isaguliants MG, Sandström E, Hinkula J, Wahren B (2004) Topical delivery of imiquimod to a mouse model as a novel adjuvant for human immunodeficiency virus (HIV) DNA. Vaccine 22:1791–1798

    Article  PubMed  CAS  Google Scholar 

  44. Matyas GR, Friedlander AM, Glenn GM, Little S, Yu J, Alving CR (2004) Needle-free skin patch vaccination method for anthrax. Infect Immun 72:1181–1183

    Article  PubMed  CAS  Google Scholar 

  45. Kenney RT, Yu J, Guebre-Xabier M, Frech SA, Lambert A, Heller BA, Ellingsworth LR, Eyles JE, Williamson ED, Glenn GM (2004) Induction of protective immunity against lethal anthrax challenge with a patch. J Infect Dis 190:774–782

    Article  PubMed  Google Scholar 

  46. Frech SA, Kenney RT, Spyr CA, Lazar H, Viret JF, Herzog C, Gluck R, Glenn GM (2005) Improved immune responses to influenza vaccination in the elderly using an immunostimulant patch. Vaccine 23:946–950

    Article  PubMed  CAS  Google Scholar 

  47. Tierney R, Beignon AS, Rappuoli R, Muller S, Sesardic D, Partidos CD (2003) Transcutaneous immunization with tetanus toxoid and mutants of Escherichia coli heat-labile enterotoxin as adjuvants elicits strong protective antibody responses. J Infect Dis 188:753–758

    Article  PubMed  CAS  Google Scholar 

  48. Guerena-Burgueno F, Hall ER, Taylor DN, Cassels FJ, Scott DA, Wolf MK, Roberts ZJ, Nesterova GV, Alving CR, Glenn GM (2002) Safety and immunogenicity of a prototype enterotoxigenic Escherichia coli vaccine administered transcutaneously. Infect Immun 70:1874–1880

    Article  PubMed  CAS  Google Scholar 

  49. Andrianov AK, Langer R (2009) Polyphosphazenes for biology and medicine: current status and future prospects. In: Andrianov AK (ed) Polyphosphazenes for biomedical applications. Wiley, Hoboken, pp 3–13

    Chapter  Google Scholar 

  50. Andrianov AK, DeCollibus DP, Gillis HA, Kha HH, Marin A (2009) Polyphosphazene immunoadjuvants for intradermal vaccine delivery. In: Andrianov AK (ed) Polyphosphazenes for biomedical applications. Wiley, Hoboken, pp 101–116

    Chapter  Google Scholar 

  51. Andrianov AK, Marin A, Chen J (2006) Synthesis, properties, and biological activity of Poly[di(sodium carboxylatoethylphenoxy)phosphazene]. Biomacromolecules 7:394–399

    Article  PubMed  CAS  Google Scholar 

  52. Andrianov AK, Chen J, LeGolvan MP (2004) Poly(dichlorophosphazene) as a precursor for biologically active polyphosphazenes: synthesis, characterization, and stabilization. Macromolecules 37:414–420

    Article  CAS  Google Scholar 

  53. Andrianov AK, Svirkin YY, LeGolvan MP (2004) Synthesis and biologically relevant properties of polyphosphazene polyacids. Biomacromolecules 5:1999–2006

    Article  PubMed  CAS  Google Scholar 

  54. Marin A, DeCollibus DP, Andrianov AK (2010) Protein stabilization in aqueous solutions of polyphosphazene polyelectrolyte and non-ionic surfactants. Biomacromolecules 11:2268–2273. doi:10.1021/bm100603p

    Article  PubMed  CAS  Google Scholar 

  55. Andrianov AK, Decollibus DP, Marin A, Webb A, Griffin Y, Webby RJ (2011) PCPP-formulated H5N1 influenza vaccine displays improved stability and dose-sparing effect in lethal challenge studies. J Pharm Sci 100:1436–1443. doi:10.1002/jps.22367

    Article  CAS  Google Scholar 

  56. Payne LG, Jenkins SA, Woods AL, Grund EM, Geribo WE, Loebelenz JR, Andrianov AK, Roberts BE (1998) Poly[di(carboxylatophenoxy)phosphazene] (PCPP) is a potent immunoadjuvant for an influenza vaccine. Vaccine 16:92–98

    Article  PubMed  CAS  Google Scholar 

  57. Payne LG, Van Nest G, Barchfeld GL, Siber GR, Gupta RK, Jenkins SA (1998) PCPP as a parenteral adjuvant for diverse antigens. Dev Biol Stand 92:79–87

    PubMed  CAS  Google Scholar 

  58. Mutwiri G, Benjamin P, Soita H, Townsend H, Yost R, Roberts B, Andrianov AK, Babiuk LA (2007) Poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) is a potent enhancer of mixed Th1/Th2 immune responses in mice immunized with influenza virus antigens. Vaccine 25:1204–1213

    Article  PubMed  CAS  Google Scholar 

  59. Lu Y, Salvato MS, Pauza CD, Li J, Sodroski J, Manson K, Wyand M, Letvin N, Jenkins S, Touzjian N, Chutkowski C, Kushner N, LeFaile M, Payne LG, Roberts B (1996) Utility of SHIV for testing HIV-1 vaccine candidates in macaques. J Acquir Immune Defic Syndr Hum Retrovirol 12:99–106

    Article  PubMed  CAS  Google Scholar 

  60. Wu JY, Wade WF, Taylor RK (2001) Evaluation of cholera vaccines formulated with toxin-coregulated pilin peptide plus polymer adjuvant in mice. Infect Immun 69:7695–7702

    Article  PubMed  CAS  Google Scholar 

  61. Bouveret Le Cam NN, Ronco J, Francon A, Blondeau C, Fanget B (1998) Adjuvants for influenza vaccine. Res Immunol 149:19–23

    Article  Google Scholar 

  62. Ison MG, Mills J, Openshaw P, Zambon M, Osterhaus A, Hayden F (2002) Current research on respiratory viral infections: fourth international symposium. Antiviral Res 55:227–278

    Article  PubMed  CAS  Google Scholar 

  63. Kim JH, Kirsch EA, Gilliam B, Michael NL, VanCott TC, Ratto-Kim S, Cox J, Nielsen R, Robb ML, Caudrelier P, El Habib R, McNeil J (1999) A phase I, open label, dose ranging trial of The Pasteur Merieux Connaught (PMC) oligomeric HIV-1 Gp160mn/LAI-2 vaccine in HIV seronegative adults. In: Abstracts of the 37th annual meeting of the infectious diseases society of America, Philadelphia, PA, pp. 1028

    Google Scholar 

  64. Mutwiri G, Benjamin P, Soita H, Babiuk LA (2008) Co-administration of polyphosphazenes with CpG oligodeoxynucleotides strongly enhances immune responses in mice immunized with Hepatitis B virus surface antigen. Vaccine 26:2680–2688

    Article  PubMed  CAS  Google Scholar 

  65. Andrianov AK, Sargent JR, Sule SS, Le Golvan MP, Woods AL, Jenkins SA, Payne LG (1998) Synthesis, physico-chemical properties and immunoadjuvant activity of water-soluble phosphazene polyacids. J Bioact Compat Polym 13:243–256

    CAS  Google Scholar 

  66. Constant SL, Bottomly K (1997) Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu Rev Immunol 15:297–322

    Article  PubMed  CAS  Google Scholar 

  67. Andrianov AK, Marin A, Roberts BE (2005) Polyphosphazene polyelectrolytes: a link between the formation of noncovalent complexes with antigenic proteins and immunostimulating activity. Biomacromolecules 6:1375–1379

    Article  PubMed  CAS  Google Scholar 

  68. Kabanov VA (2004) From synthetic polyelectrolytes to polymer-subunit vaccines. Pure Appl Chem 76:1659–1677

    Article  CAS  Google Scholar 

  69. Gill HS, Prausnitz MR (2007) Coating formulations for microneedles. Pharm Res 24:1369–1380

    Article  PubMed  CAS  Google Scholar 

  70. Andrianov AK, Chen J, Payne LG (1998) Preparation of hydrogel microspheres by coacervation of aqueous polyphosphazene solutions. Biomaterials 19:109–115

    Article  PubMed  CAS  Google Scholar 

  71. Andrianov AK, Chen J (2006) Polyphosphazene microspheres: preparation by ionic complexation of phosphazene polyacids with spermine. J Appl Polymer Sci 101:414–419

    Article  CAS  Google Scholar 

  72. Gill HS, Prausnitz MR (2007) Coated microneedles for transdermal delivery. J Control Release 117:227–237

    Article  PubMed  CAS  Google Scholar 

  73. Monteiro-Riviere NA (1991) Comparative anatomy, physiology, and biochemistry of mammalian skin. In: Hobson D (ed) Dermal and ocular toxicology: fundamentals and methods. CRC, Boca Raton, pp 3–71

    Google Scholar 

  74. Andrianov A, Marin A, DeCollibus D (2011) Microneedles with intrinsic immunoadjuvant properties: microfabrication, protein stability, and modulated release. Pharm Res 28:58–65. doi:10.1007/s11095-010-0133-7

    Article  PubMed  CAS  Google Scholar 

  75. Quan F-S, Kim Y-C, Yoo D-G, Compans RW, Prausnitz MR, Kang S-M (2009) Stabilization of influenza vaccine enhances protection by microneedle delivery in the mouse skin. PLoS One 4:e7152

    Article  PubMed  Google Scholar 

  76. Heinig K, Vogt C (1997) Determination of Triton X-100 in influenza vaccine by high-performance liquid chromatography and capillary electrophoresis. Anal Bioanal Chem 359:202–206

    CAS  Google Scholar 

  77. Cohen S, Bano MC, Visscher KB, Chow M, Allcock HR, Langer R (1990) Ionically crosslinkable polyphosphazene: a novel polymer for microencapsulation. J Am Chem Soc 112:7832–7833

    Article  CAS  Google Scholar 

  78. Allcock HR, Kwon S (1989) An ionically cross-linkable polyphosphazene: poly[bis(carboxylatophenoxy)phosphazene] and its hydrogels and membranes. Macromolecules 22:75–79

    Article  CAS  Google Scholar 

  79. Andrianov AK, Cohen S, Visscher KB, Payne LG, Allcock HR, Langer R (1993) Controlled release using ionotropic polyphosphazene hydrogels. J Control Release 27:69–77

    Article  CAS  Google Scholar 

  80. Andrianov AK (2007) Polyphosphazenes as vaccine adjuvants. In: Singh M (ed) Vaccine adjuvants and delivery systems. Wiley, Hoboken, pp 355–378

    Chapter  Google Scholar 

  81. Mutwiri G, Benjamin P, Andrianov AK, Babiuk LA (2009) Potential of polyphosphazenes in modulating vaccine-induced immune responses: I. Investigations in mice. In: Andrianov AK (ed) Polyphosphazenes for Biomedical Applications. Wiley, Hoboken, pp 65–75

    Google Scholar 

  82. Marin A, Andrianov AK (2011) Carboxymethylcellulose–chitosan-coated microneedles with modulated hydration properties. J Appl Polymer Sci 121:395–401. doi:10.1002/app. 33608

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander K. Andrianov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andrianov, A.K. (2013). Microneedles for Intradermal Vaccination: Immunopotentiation and Formulation Aspects. In: Singh, M. (eds) Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5380-2_10

Download citation

Publish with us

Policies and ethics