Skip to main content

Abstract

Chronic use of alcohol and other drugs of abuse have been demonstrated to activate the innate immune system of the CNS. This activation, in turn, may lead to progressive changes to neurobiology that underlie loss of behavioral control and increased limbic negative affect common in addiction. Ethanol exerts effects on the systemic adaptive and innate immune systems [1]. Adaptive immunity comprises a class of highly specialized lymphocytic cells that recognize, remember, and target specific pathogens through the production of antibodies. This system is protective in that it maintains an immunological memory of the pathogen in the lymphocytes in preparation for future insults. In contrast, the innate immune system mounts a nonspecific immune response to a pathogen via secretion of cytokines and other chemical messages that activate cells. This chapter will focus on the effects of alcohol on innate immunity because the brain possesses few lymphocytes and, consequently, minimal adaptive immunity. Although beyond the scope of this chapter, it is important to note that ethanol causes the gut to become “leaky” resulting in the release of the endotoxin lipopolysaccharide (LPS). The increased gut permeability to LPS contributes to liver inflammation and secretion of proinflammatory cytokines [e.g., tumor necrosis factor-alpha (TNFα)] into the blood. The blood is then transported into the brain where TNFα and other cytokines are induced causing neuroinflammation that persists long after the resolution of the peripheral inflammatory response [2] (see Fig. 8.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crews FT et al (2006) Cytokines and alcohol. Alcohol Clin Exp Res 30:720–730

    Article  PubMed  CAS  Google Scholar 

  2. Qin L et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed  Google Scholar 

  3. Li TK (2008) Quantifying the risk for alcohol-use and alcohol-attributable health disorders: present findings and future research needs. J Gastroenterol Hepatol 23(Suppl 1):S2–S8

    Article  PubMed  CAS  Google Scholar 

  4. Gilson AM (2010) The concept of addiction in law and regulatory policy related to pain management: a critical review. Clin J Pain 26:70–77

    Article  PubMed  Google Scholar 

  5. Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413

    Article  PubMed  Google Scholar 

  6. Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 8:1442–1444

    Article  PubMed  CAS  Google Scholar 

  7. Schoenbaum G, Shaham Y (2008) The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biol Psychiatry 63:256–262

    Article  PubMed  CAS  Google Scholar 

  8. Crews FT, Boettiger CA (2009) Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav 93:237–247

    Article  PubMed  CAS  Google Scholar 

  9. Bechara A, Dolan S, Hindes A (2002) Decision-making and addiction (part II): myopia for the future or hypersensitivity to reward? Neuropsychologia 40:1690–1705

    Article  PubMed  Google Scholar 

  10. Ersche KD, Roiser JP, Robbins TW, Sahakian BJ (2008) Chronic cocaine but not chronic amphetamine use is associated with perseverative responding in humans. Psychopharmacology (Berl) 197:421–431

    Article  CAS  Google Scholar 

  11. Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl) 146:373–390

    Article  CAS  Google Scholar 

  12. Rogers RD et al (1999) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20:322–339

    Article  PubMed  CAS  Google Scholar 

  13. Rogers RD, Robbins TW (2001) Investigating the neurocognitive deficits associated with chronic drug misuse. Curr Opin Neurobiol 11:250–257

    Article  PubMed  CAS  Google Scholar 

  14. Coleman LG Jr, He J, Lee J, Styner M, Crews FT (2011) Adolescent binge drinking alters adult brain neurotransmitter gene expression, behavior, brain regional volumes, and neurochemistry in mice. Alcohol Clin Exp Res 35:671–688

    Article  PubMed  CAS  Google Scholar 

  15. Obernier JA, White AM, Swartzwelder HS, Crews FT (2002) Cognitive deficits and CNS damage after a 4-day binge ethanol exposure in rats. Pharmacol Biochem Behav 72:521–532

    Article  PubMed  CAS  Google Scholar 

  16. Calu DJ, Roesch MR, Stalnaker TA, Schoenbaum G (2007) Associative encoding in posterior piriform cortex during odor discrimination and reversal learning. Cereb Cortex 17:1342–1349

    Article  PubMed  Google Scholar 

  17. Schoenbaum G, Saddoris MP, Ramus SJ, Shaham Y, Setlow B (2004) Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. Eur J Neurosci 19:1997–2002

    Article  PubMed  Google Scholar 

  18. Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    Article  PubMed  Google Scholar 

  19. Crews F et al (2006) BHT blocks NF-kappaB activation and ethanol-induced brain damage. Alcohol Clin Exp Res 30:1938–1949

    Article  PubMed  CAS  Google Scholar 

  20. Reissner KJ, Kalivas PW (2010) Using glutamate homeostasis as a target for treating addictive disorders. Behav Pharmacol 21:514–522

    Article  PubMed  CAS  Google Scholar 

  21. Gruber AJ et al (2010) More is less: a disinhibited prefrontal cortex impairs cognitive flexibility. J Neurosci 30:17102–17110

    Article  PubMed  CAS  Google Scholar 

  22. Stalnaker TA, Takahashi Y, Roesch MR, Schoenbaum G (2009) Neural substrates of cognitive inflexibility after chronic cocaine exposure. Neuropharmacology 56(Suppl 1):63–72

    Article  PubMed  CAS  Google Scholar 

  23. Kelley KW, Dantzer R (2011) Alcoholism and inflammation: neuroimmunology of behavioral and mood disorders. Brain Behav Immun 25(Suppl 1):S13–S20

    Article  PubMed  CAS  Google Scholar 

  24. Hanisch UK, Johnson TV, Kipnis J (2008) Toll-like receptors: roles in neuroprotection? Trends Neurosci 31:176–182

    Article  PubMed  CAS  Google Scholar 

  25. Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58:253–263

    PubMed  Google Scholar 

  26. Ginhoux F et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  PubMed  CAS  Google Scholar 

  27. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    Article  PubMed  CAS  Google Scholar 

  28. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  29. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  PubMed  CAS  Google Scholar 

  30. Sparvero LJ et al (2009) RAGE (receptor for advanced glycation endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 7:17

    Article  PubMed  CAS  Google Scholar 

  31. Han SH, Kim YH, Mook-Jung I (2011) RAGE: the beneficial and deleterious effects by diverse mechanisms of actions. Mol Cells 31:91–97

    Article  PubMed  CAS  Google Scholar 

  32. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388

    Article  PubMed  CAS  Google Scholar 

  33. Garg AD et al (2010) Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta 1805:53–71

    PubMed  CAS  Google Scholar 

  34. Vabulas RM et al (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277:20847–20853

    Article  PubMed  CAS  Google Scholar 

  35. Scheibner KA et al (2006) Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol 177:1272–1281

    PubMed  CAS  Google Scholar 

  36. Thomas JO (2001) HMG1 and 2: architectural DNA-binding proteins. Biochem Soc Trans 29:395–401

    Article  PubMed  CAS  Google Scholar 

  37. Paull TT, Haykinson MJ, Johnson RC (1993) The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev 7:1521–1534

    Article  PubMed  CAS  Google Scholar 

  38. Huang W, Tang Y, Li L (2010) HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine 51:119–126

    Article  PubMed  CAS  Google Scholar 

  39. Blanco AM, Valles SL, Pascual M, Guerri C (2005) Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol 175:6893–6899

    PubMed  CAS  Google Scholar 

  40. Crews FT, Qin L, Sheedy D, Vetreno RP, Zou J (In Press) HMGB1/TLR receptor danger signaling increases brain neuroimmune activation in alcohol dependence. Biological Psychiatry

    Google Scholar 

  41. Hutchinson MR et al (2008) Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4). Eur J Neurosci 28:20–29

    Article  PubMed  Google Scholar 

  42. Plane JM, Shen Y, Pleasure DE, Deng W (2010) Prospects for minocycline neuroprotection. Arch Neurol 67:1442–1448

    Article  PubMed  Google Scholar 

  43. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  PubMed  CAS  Google Scholar 

  44. Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14

    Article  PubMed  CAS  Google Scholar 

  45. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145

    Article  PubMed  CAS  Google Scholar 

  46. Graeber MB (2010) Changing face of microglia. Science 330:783–788

    Article  PubMed  CAS  Google Scholar 

  47. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  48. Raivich G et al (1999) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 30:77–105

    Article  PubMed  CAS  Google Scholar 

  49. He J, Crews FT (2008) Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 210:349–358

    Article  PubMed  CAS  Google Scholar 

  50. Qin L et al (2008) Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation 5:10

    Article  PubMed  CAS  Google Scholar 

  51. Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418

    Article  PubMed  Google Scholar 

  52. Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P (2009) Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol 210:3–12

    Article  PubMed  CAS  Google Scholar 

  53. Aschner M (1998) Astrocytes as mediators of immune and inflammatory responses in the CNS. Neurotoxicology 19:269–281

    PubMed  CAS  Google Scholar 

  54. Aschner M, Sonnewald U, Tan KH (2002) Astrocyte modulation of neurotoxic injury. Brain Pathol 12:475–481

    Article  PubMed  CAS  Google Scholar 

  55. Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  PubMed  CAS  Google Scholar 

  56. Lee H et al (2004) Ethanol selectively modulates inflammatory activation signaling of brain microglia. J Neuroimmunol 156:88–95

    Article  PubMed  CAS  Google Scholar 

  57. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30:8285–8295

    Article  PubMed  CAS  Google Scholar 

  58. Shpargel KB et al (2008) Preconditioning paradigms and pathways in the brain. Cleve Clin J Med 75(Suppl 2):S77–S82

    Article  PubMed  Google Scholar 

  59. McClain JA et al (2011) Adolescent binge alcohol exposure induces long-lasting partial activation of microglia. Brain Behav Immun 25(Suppl 1):S120–S128

    Article  PubMed  CAS  Google Scholar 

  60. Valles SL, Blanco AM, Pascual M, Guerri C (2004) Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol 14:365–371

    Article  PubMed  CAS  Google Scholar 

  61. Greer JM, Capecchi MR (2002) Hoxb8 is required for normal grooming behavior in mice. Neuron 33:23–34

    Article  PubMed  CAS  Google Scholar 

  62. Gonzalez-Perez O, Ramos-Remus C, Garcia-Estrada J, Luquin S (2001) Prednisone induces anxiety and glial cerebral changes in rats. J Rheumatol 28:2529–2534

    PubMed  CAS  Google Scholar 

  63. Torres-Platas SG et al (2011) Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides. Neuropsychopharmacology 36:2650–2658

    Article  PubMed  Google Scholar 

  64. Ang E et al (2001) Induction of nuclear factor-kappaB in nucleus accumbens by chronic cocaine administration. J Neurochem 79:221–224

    Article  PubMed  CAS  Google Scholar 

  65. Mao XR, Moerman-Herzog AM, Chen Y, Barger SW (2009) Unique aspects of transcriptional regulation in neurons–nuances in NFkappaB and Sp1-related factors. J Neuroinflammation 6:16

    Article  PubMed  CAS  Google Scholar 

  66. Madrigal JL, Moro MA, Lizasoain I, Lorenzo P, Leza JC (2002) Stress-induced increase in extracellular sucrose space in rats is mediated by nitric oxide. Brain Res 938:87–91

    Article  PubMed  CAS  Google Scholar 

  67. Madrigal JL et al (2003) Relationship between cyclooxygenase-2 and nitric oxide synthase-2 in rat cortex after stress. Eur J Neurosci 18:1701–1705

    Article  PubMed  Google Scholar 

  68. Munhoz CD, Sorrells SF, Caso JR, Scavone C, Sapolsky RM (2010) Glucocorticoids exacerbate lipopolysaccharide-induced signaling in the frontal cortex and hippocampus in a dose-dependent manner. J Neurosci 30:13690–13698

    Article  PubMed  CAS  Google Scholar 

  69. Zou J, Crews F (2006) CREB and NF-kappaB transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death. Cell Mol Neurobiol 26:385–405

    Article  PubMed  CAS  Google Scholar 

  70. Zou J, Crews F (2010) Induction of innate immune gene expression cascades in brain slice cultures by ethanol: key role of NF-kappaB and proinflammatory cytokines. Alcohol Clin Exp Res 34:777–789

    Article  PubMed  CAS  Google Scholar 

  71. Knapp DJ, Crews FT (1999) Induction of cyclooxygenase-2 in brain during acute and chronic ethanol treatment and ethanol withdrawal. Alcohol Clin Exp Res 23:633–643

    Article  PubMed  CAS  Google Scholar 

  72. Cao Q, Mak KM, Lieber CS (2005) Cytochrome P4502E1 primes macrophages to increase TNF-alpha production in response to lipopolysaccharide. Am J Physiol Gastrointest Liver Physiol 289:G95–G107

    Article  PubMed  CAS  Google Scholar 

  73. Ward RJ et al (1996) Identification of the nuclear transcription factor NFkappaB in rat after in vivo ethanol administration. FEBS Lett 389:119–122

    Article  PubMed  CAS  Google Scholar 

  74. Davis RL, Syapin PJ (2004) Ethanol increases nuclear factor-kappa B activity in human astroglial cells. Neurosci Lett 371:128–132

    Article  PubMed  CAS  Google Scholar 

  75. Pietri M et al (2005) Reactive oxygen species-dependent TNF-alpha converting enzyme activation through stimulation of 5-HT2B and alpha1D autoreceptors in neuronal cells. FASEB J 19:1078–1087

    Article  PubMed  CAS  Google Scholar 

  76. Thakur V, McMullen MR, Pritchard MT, Nagy LE (2007) Regulation of macrophage activation in alcoholic liver disease. J Gastroenterol Hepatol 22(Suppl 1):S53–S56

    Article  PubMed  CAS  Google Scholar 

  77. Pascual M, Balino P, Alfonso-Loeches S, Aragon CM, Guerri C (2011) Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 25(Suppl 1):S80–S91

    Article  PubMed  CAS  Google Scholar 

  78. Fernandez-Lizarbe S, Pascual M, Guerri C (2009) Critical role of TLR4 response in the activation of microglia induced by ethanol. J Immunol 183:4733–4744

    Article  PubMed  CAS  Google Scholar 

  79. Pascual M, Blanco AM, Cauli O, Minarro J, Guerri C (2007) Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats. Eur J Neurosci 25:541–550

    Article  PubMed  Google Scholar 

  80. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238

    Article  PubMed  Google Scholar 

  81. Liu B et al (2000) Systemic infusion of naloxone reduces degeneration of rat substantia nigral dopaminergic neurons induced by intranigral injection of lipopolysaccharide. J Pharmacol Exp Ther 295:125–132

    PubMed  CAS  Google Scholar 

  82. Liu B, Du L, Hong JS (2000) Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther 293:607–617

    PubMed  CAS  Google Scholar 

  83. Qin L, Liu Y, Qian X, Hong JS, Block ML (2005) Microglial NADPH oxidase mediates leucine enkephalin dopaminergic neuroprotection. Ann N Y Acad Sci 1053:107–120

    Article  PubMed  CAS  Google Scholar 

  84. Hutchinson MR et al (2010) Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 24:83–95

    Article  PubMed  CAS  Google Scholar 

  85. Breese GR, Overstreet DH, Knapp DJ (2005) Conceptual framework for the etiology of alcoholism: a “kindling”/stress hypothesis. Psychopharmacology (Berl) 178:367–380

    Article  CAS  Google Scholar 

  86. O’Connor MF, Irwin MR, Seldon J, Kwan L, Ganz PA (2007) Pro-inflammatory cytokines and depression in a familial cancer registry. Psychooncology 16:499–501

    Article  PubMed  Google Scholar 

  87. Breese GR et al (2008) Repeated lipopolysaccharide (LPS) or cytokine treatments sensitize ethanol withdrawal-induced anxiety-like behavior. Neuropsychopharmacology 33:867–876

    Article  PubMed  CAS  Google Scholar 

  88. Capuron L, Ravaud A (1999) Prediction of the depressive effects of interferon alfa therapy by the patient’s initial affective state. N Engl J Med 340:1370

    Article  PubMed  CAS  Google Scholar 

  89. McNutt MD et al (2012) Neurobehavioral effects of interferon-alpha in patients with hepatitis-C: symptom dimensions and responsiveness to paroxetine. Neuropsychopharmacol 37:1444–1454

    Google Scholar 

  90. Eisenberger NI et al (2010) Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry 68:748–754

    Article  PubMed  CAS  Google Scholar 

  91. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  PubMed  CAS  Google Scholar 

  92. Okvist A et al (2007) Neuroadaptations in human chronic alcoholics: dysregulation of the NF-kappaB system. PLoS One 2:e930

    Article  PubMed  CAS  Google Scholar 

  93. Liu J et al (2006) Patterns of gene expression in the frontal cortex discriminate alcoholic from nonalcoholic individuals. Neuropsychopharmacology 31:1574–1582

    Article  PubMed  CAS  Google Scholar 

  94. Loftis JM, Choi D, Hoffman W, Huckans MS (2011) Methamphetamine causes persistent immune dysregulation: a cross-species, translational report. Neurotox Res 20:59–68

    Article  PubMed  CAS  Google Scholar 

  95. Hock R, Furusawa T, Ueda T, Bustin M (2007) HMG chromosomal proteins in development and disease. Trends Cell Biol 17:72–79

    Article  PubMed  CAS  Google Scholar 

  96. Muller S, Ronfani L, Bianchi ME (2004) Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med 255:332–343

    Article  PubMed  CAS  Google Scholar 

  97. Maroso M et al (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16:413–419

    Article  PubMed  CAS  Google Scholar 

  98. Park JS et al (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377

    Article  PubMed  CAS  Google Scholar 

  99. Yang L et al (2010) Role of phospholipase D2/phosphatidic acid signal transduction in micro- and delta-opioid receptor endocytosis. Mol Pharmacol 78:105–113

    Article  PubMed  CAS  Google Scholar 

  100. Rauvala H, Rouhiainen A (2010) Physiological and pathophysiological outcomes of the interactions of HMGB1 with cell surface receptors. Biochim Biophys Acta 1799:164–170

    Article  PubMed  CAS  Google Scholar 

  101. Volz HC, Kaya Z, Katus HA, Andrassy M (2010) The role of HMGB1/RAGE in inflammatory cardiomyopathy. Semin Thromb Hemost 36:185–194

    Article  PubMed  CAS  Google Scholar 

  102. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25:181–213

    Article  PubMed  CAS  Google Scholar 

  103. Okun E et al (2010) Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proc Natl Acad Sci USA 107:15625–15630

    Article  PubMed  Google Scholar 

  104. Hanke ML, Kielian T (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci 121:367–387

    Article  PubMed  CAS  Google Scholar 

  105. Arancio O et al (2004) RAGE potentiates Abeta-induced perturbation of neuronal function in transgenic mice. EMBO J 23:4096–4105

    Article  PubMed  CAS  Google Scholar 

  106. Fang F et al (2010) RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J 24:1043–1055

    Article  PubMed  CAS  Google Scholar 

  107. Maczurek A, Shanmugam K, Munch G (2008) Inflammation and the redox-sensitive AGE-RAGE pathway as a therapeutic target in Alzheimer’s disease. Ann N Y Acad Sci 1126:147–151

    Article  PubMed  CAS  Google Scholar 

  108. Wilson JS et al (2009) Anti-RAGE and Abeta immunoglobulin levels are related to dementia level and cognitive performance. J Gerontol A Biol Sci Med Sci 64:264–271

    Article  PubMed  CAS  Google Scholar 

  109. Mulligan MK et al (2006) Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proc Natl Acad Sci USA 103:6368–6373

    Article  PubMed  CAS  Google Scholar 

  110. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18:6853–6866

    Article  PubMed  CAS  Google Scholar 

  111. Blednov YA et al (2005) Perturbation of chemokine networks by gene deletion alters the reinforcing actions of ethanol. Behav Brain Res 165:110–125

    Article  PubMed  CAS  Google Scholar 

  112. Blednov YA et al (2012) Neuroimmune regulation of alcohol consumption: behavioral validation of genes obtained from genomic studies. Addict Biol 17:108–120

    Article  PubMed  CAS  Google Scholar 

  113. Blednov YA et al (2011) Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice. Brain Behav Immun 25(Suppl 1):S92–S105

    Article  PubMed  CAS  Google Scholar 

  114. Liu J et al (2011) Binge alcohol drinking is associated with GABAA alpha2-regulated Toll-like receptor 4 (TLR4) expression in the central amygdala. Proc Natl Acad Sci USA 108:4465–4470

    Article  PubMed  Google Scholar 

  115. Videbech P, Ravnkilde B (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161:1957–1966

    Article  PubMed  Google Scholar 

  116. Crews FT, Nixon K (2003) Alcohol, neural stem cells, and adult neurogenesis. Alcohol Res Health 27:197–204

    PubMed  Google Scholar 

  117. Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 105:751–756

    Article  PubMed  Google Scholar 

  118. Tanapat P, Hastings NB, Rydel TA, Galea LA, Gould E (2001) Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J Comp Neurol 437:496–504

    Article  PubMed  CAS  Google Scholar 

  119. Malberg JE, Duman RS (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28:1562–1571

    Article  PubMed  CAS  Google Scholar 

  120. Gregus A, Wintink AJ, Davis AC, Kalynchuk LE (2005) Effect of repeated corticosterone injections and restraint stress on anxiety and depression-like behavior in male rats. Behav Brain Res 156:105–114

    Article  PubMed  CAS  Google Scholar 

  121. Kempermann G (2002) Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci 22:635–638

    PubMed  CAS  Google Scholar 

  122. Shors TJ et al (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410:372–376

    Article  PubMed  CAS  Google Scholar 

  123. Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    PubMed  CAS  Google Scholar 

  124. Dranovsky A, Hen R (2006) Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 59:1136–1143

    Article  PubMed  CAS  Google Scholar 

  125. Johnson SA, Fournier NM, Kalynchuk LE (2006) Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor. Behav Brain Res 168:280–288

    Article  PubMed  CAS  Google Scholar 

  126. Christoffel DJ et al (2011) IkappaB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J Neurosci 31:314–321

    Article  PubMed  CAS  Google Scholar 

  127. Santarelli L et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  PubMed  CAS  Google Scholar 

  128. Stevenson JR et al (2009) Abstinence following alcohol drinking produces depression-like behavior and reduced hippocampal neurogenesis in mice. Neuropsychopharmacology 34:1209–1222

    Article  PubMed  CAS  Google Scholar 

  129. Townshend JM, Duka T (2003) Mixed emotions: alcoholics’ impairments in the recognition of specific emotional facial expressions. Neuropsychologia 41:773–782

    Article  PubMed  CAS  Google Scholar 

  130. Weissenborn R, Duka T (2003) Acute alcohol effects on cognitive function in social drinkers: their relationship to drinking habits. Psychopharmacology (Berl) 165:306–312

    CAS  Google Scholar 

  131. Zou JY, Crews FT (2005) TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res 1034:11–24

    Article  PubMed  CAS  Google Scholar 

  132. Ward RJ et al (2009) Neuro-inflammation induced in the hippocampus of ‘binge drinking’ rats may be mediated by elevated extracellular glutamate content. J Neurochem 111:1119–1128

    Article  PubMed  CAS  Google Scholar 

  133. Schoenbaum G, Roesch MR, Stalnaker TA (2006) Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci 29:116–124

    Article  PubMed  CAS  Google Scholar 

  134. Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW (1999) In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 2:859–861

    Article  PubMed  CAS  Google Scholar 

  135. Sowell ER, Thompson PM, Tessner KD, Toga AW (2001) Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during postadolescent brain maturation. J Neurosci 21:8819–8829

    PubMed  CAS  Google Scholar 

  136. van Eden CG, Kros JM, Uylings HB (1990) The development of the rat prefrontal cortex. Its size and development of connections with thalamus, spinal cord and other cortical areas. Prog Brain Res 85:169–183

    Article  PubMed  Google Scholar 

  137. Huttenlocher PR (1984) Synapse elimination and plasticity in developing human cerebral cortex. Am J Ment Defic 88:488–496

    PubMed  CAS  Google Scholar 

  138. Zecevic N, Bourgeois JP, Rakic P (1989) Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. Brain Res Dev Brain Res 50:11–32

    Article  PubMed  CAS  Google Scholar 

  139. Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HB (1988) Development of the dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol 269:58–72

    Article  PubMed  CAS  Google Scholar 

  140. Rosenberg DR, Lewis DA (1994) Changes in the dopaminergic innervation of monkey prefrontal cortex during late postnatal development: a tyrosine hydroxylase immunohistochemical study. Biol Psychiatry 36:272–277

    Article  PubMed  CAS  Google Scholar 

  141. Gould E, Woolf NJ, Butcher LL (1991) Postnatal development of cholinergic neurons in the rat: I. Forebrain. Brain Res Bull 27:767–789

    Article  PubMed  CAS  Google Scholar 

  142. Kostovic I (1990) Structural and histochemical reorganization of the human prefrontal cortex during perinatal and postnatal life. Prog Brain Res 85:223–239, discussion 239–240

    Article  PubMed  CAS  Google Scholar 

  143. Ernst M, Romeo RD, Andersen SL (2009) Neurobiology of the development of motivated behaviors in adolescence: a window into a neural systems model. Pharmacol Biochem Behav 93:199–211

    Article  PubMed  CAS  Google Scholar 

  144. Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463

    Article  PubMed  CAS  Google Scholar 

  145. Crews F, He J, Hodge C (2007) Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav 86:189–199

    Article  PubMed  CAS  Google Scholar 

  146. Silveri MM, Spear LP (1998) Decreased sensitivity to the hypnotic effects of ethanol early in ontogeny. Alcohol Clin Exp Res 22:670–676

    Article  PubMed  CAS  Google Scholar 

  147. Monti PM et al (2005) Adolescence: booze, brains, and behavior. Alcohol Clin Exp Res 29:207–220

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge support from the Bowles Center of Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, the National Institute of Health, and the National Institute on Alcoholism and Alcohol Abuse through AA020023, AA020022, AA019767, AA11605, and AA007573.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulton T. Crews Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vetreno, R.P., Crews, F.T. (2013). Innate Immune Signaling and Alcoholism. In: Cui, C., Grandison, L., Noronha, A. (eds) Neural-Immune Interactions in Brain Function and Alcohol Related Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4729-0_8

Download citation

Publish with us

Policies and ethics